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INTRODUCTION 
 

 

The aim of this work is to give a brief overview of the 

polyelectrolyte layered shells for immobilized cells 

systems produced for biomedical purposes. The recent 

advances in the development of such systems is 

mentioned including example polyelectrolyte materials 

applied for multilayer forming, methods of detection of 

layers and presentation of usability of multilayered 

shells for immobilization of cells.  

The methods of immobilization of cells within 

polymeric shells have been explored and developed due 

to their wide range of possible applications in 

biotechnology, and in cell-based transplantation 

therapies. However, the layer by layer (LbL) technique 

[1-6] has crucial role in forming of layered shell as an 

element of scaffold for cell immobilization.  

It can be noted that for now, all approaches concerning 

application of LbL method for immobilization of cells 

are short-term.    

The systems involving polyelectrolyte shells for 

biological processes regulation can be constructed 

involving different immobilized cells such as mouse 

mesenchymal stem cells, erythrocytes, yeast, 

Escherichia coli, Bacillus subtilis, dental pulp stem cells, 

neural cells, endothelial and fibroblastic cells [7-14].  

 
POLYELECTROLYTE MULTILAYER SHELLS 

Mechanism of self-assembly 

The technique of layer-by-layer multilayers forming was 

designed in the first place for macroscopic surfaces [15], 

then was adapted for immobilization of cells. The layer-

by-layer (LbL) self-assembly forming can be driven by 

different processes: electrostatic interaction between the 

oppositely charged constituents [16], hydrogen bonding 

[17-19], covalent bonding [20], hydrophobic interactions 

[20-22], van der Waals forces [23,24],  and/or combined 

processes which can be engaged [22,25,26]. The 

forming of LbL mutlilayers  with combined processes 

involvement can be driven by hydrophobic interaction 

and then reinforced by hydrogen interaction developing 

ultrathin membranes forming [22], also, electrostatic 
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interaction and hydrophobic interaction or electrostatic 

and hydrogen interactions [27] may take apart in self- 

assembly forming [28]. The hydrogen and van der Waals 

interactions are the forces that may competitively control 

the morphology of the single monolayer, and the self-

assembled 2D nanostructure is determined by balance of 

these two interactions [26]. The example polyelectrolyte 

multilayers formed by combined processes are presented 

in Table 1. 

Table 1: Example PE multilayers formed by combined processes. 

 

The most commonly applied electrostatic interaction 

between the charged constituents allows to deposite 

oppositely charged polyions onto charged substrats and 

consequitive layers producing of the polyelectrolyte 

(PE) multilayer shell [16,29]. 

Covalent bonding in LbL shell is mainly applied in 

special case of immobilization - cell encapsulation 

between the cell and the layer covering the cell and is 

performed by chemical or enzymatic conjugation of 

polymer to the cell [30-32]. Moreover, metabolic 

introduction can be applied. The amphiphilic polymers, 

e.g. temperature-sensitive amphiphilic polyelectrolyte 

succinylated pullulan-g-oligo(L-lactide) [33] are 

reported to ensure hydrophobic conjugation.  

Experimental results indicate that the balance between 

ionic and hydrophobic interactions plays a leading role 

not only in the construction of the self-assembled system 

but also in the functional properties of the bioactive 

interface [34].   

Polyelectrolytes  

A great deal of attention is payed to investigation of PE 

gels and complexes for contact with cells [35]. The PE 

ionic groups enable to create the stable water dispersions 

where the ionized polymer chain provides the surface 

active center.  Polyelectrolytes classified according to 

their origin encompass natural and synthetic polymers. 

The most common synthetic polyelectrolytes are poly 

(acrylic acid) (PAA), poly(methacrylic acid) (PMA), 

poly(allylamine) (PAH), poly(styrene sulfonate) (PSS), 

poly(ethyleneimine) (PEI), poly(vinyl sulfate) (PVS), 

poly (dimethyldiallylammonium chloride) (PDDA) and  

poly(N-isopropyl acrylamide (PNIPAM) [36-38]. The 

group of natural polyelectrolytes includes nucleic acids, 

proteins, polypeptides e g., poly-L-lysine (PLL), poly-L-

glutamic acid (PGA), poly-L-arginine (ARG) and poly-L 

aspartic acid (ASP), poly-L-glutamic acid (PGA) and 

polysaccharides such as  chitosan (CHIT), cellulose 

sulfate, carboxymethylcellulose, heparin, hialuronic acid 

(HA), dextran sulphate, and alginate (ALG) - still 

ubiquitous in encapsulation of cells [39-41].    

The characteristic of the chosen basic natural polymers 

is shortly presented below 

Alginate is a natural anionic polymer isolated from 

Azotobacter vinelandii, several Pseudomonas species, 

and algae [42,43]. The sort of utilized algs depends of 

geographical position where the algae are collected. The 

algae used in Norway it is Laminaria hyperborea and 

Ascophyllum nodosum, the algae used in USA it is 

mainly Macrocystis pyrifera. The chemical composition 

may slightly differ in dependence of the sort of algae.  

Alginic acid is a linear block copolymer of 1,4′-linked β-

D-mannuronic acid (M) and α-L-guluronic acid (G) 

monomers in varying proportions combined with 

glycozyde bindings.  The individual polymeric chains 

may involve the type MM segments or GG or MG 

connected with hydrogen bindings. The ratio of G and M 

blocks depends on the source of algae used for alginate 

extraction. ALG is a polyanion with pKa of about 3.2. 

Alginate has a natural ability to create the stable gels in 

reaction with calcium salts. It’s gelling is the effect of 

conglomeration of the segments of polyguluronic acid in 

clusters where calcium ions are scattered in the space 

between the chains (“egg-box model”). Alginates exhibit 

the higher affinity of the guluronic acid residues for 

PE layers Process 

Gelatin/Tannic acid (TA) hydrophobic interaction/ 
hydrogen interaction 

Chitosan-graft-
phenyl/poly(aspartic-graft-
octadecyl) 

electrostatic interaction / 
hydrophobic interaction 

O-carboxymethyl chitosan / 
alginate 

electrostatic interaction / 
hydrogen interaction 

Kahalalide F (KF) an 
anticancer hydrophobic 
peptide /alginate 

electrostatic interaction / 
hydrophobic interaction 

Alginate modified with 
protein A and  
fullerenol/polyethyleneimine 

electrostatic interaction / 
hydrogen interaction 
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divalent ions [44] making the alginates with high rate of 

guluronic acid more stable.  

Except of the Ca2+ another solutions containing divalent 

cations, such as Sr2+, or Ba2+ can be applied as a 

crosslinking solution for contact with cells. Alginate's 

affinity for different divalent ions decreases as follows: 

Pb2+ > Cu2+ > Cd2+ > Ba2+ > Sr2+ > Ca2+ > Co2+, Ni2+, 

Zn2+ > Mn2+ [45]. A higher affinity of the cation for the 

alginate residues is associated with a stronger gel [46]. 

Nevertheless, these cations, however able to crosslink 

alginate gels are reported to be toxic to the cells [47]. 

The largest issues with alginate-based systems to date 

have been purity influencing biocompatibility and 

stability [48,49]. Alginates are produced by extraction 

from the algae by EDTA chelation, physical sieving, 

therefore precipitation with ethanol and KCl, and finally 

lyophilization. High quality alginates are prepared from 

algal stipes collected directly from the sea, peeled and 

treated with antimicrobial agents to reduce the cytotoxic 

gram-positive debris. Lower-grade alginates are 

produced from algae which are washed ashore and have 

significantly higher contamination share, hard to remove 

from the processed product [50].  

Some other basic natural PE of polisaccharides origin 

involved in cell immobilization can be mentioned like 

hialuronic acid, chitosan, dextran [51-81].  

Hialuronic acid (HA) is a linear non- branched 

polysaccharide from the group of proteoglycanes.  It is 

composed of repeating disaccharide units of D-

glucuronic acid and N-acetyl-D-glucosamine bound 

alternate with glycoside bindings in position β-1-3 and 

β-1-4. The hialuronic acid is a part of extracellular 

matrix of connective tissue, epithelial, and neural 

tissues, it can be found in vitreous humour (in the space 

between the lens and the retina of the eyeball), in skin 

and umbilical cord. HA is an anionic polysaccharide, 

and the pKa of its COOH groups is 3-4; thus, at 

physiological conditions these moieties are ionized. HA 

is a highly hydrophilic polymer with ability proportional 

to the polymer molecular weight to bind and adsorb 

water due to ability of creating the hydrogen bindings of 

the carboxylic groups and N-acetylic groups of 

hialuronic acid with solutes of water. HA adsorbing 

water allows to expand up to 1000 times its solid 

volume, forming a loose hydrated network.  

Another basic natural PE- Chitosan refers to a series of 

polymers that are deacetylated derivatives of the natural 

polysaccharide, chitin obtained from the exoskeleton of 

arthropods as well as from some mushrooms. It is a 

linear polycation composed of β-1,4-linked glucosamine 

(deacetylated units) and N-acetyl-D-glucosamine 

(acetylated units) with different degrees of deacetylation 

(typically between 70% and 95%). The proportions of 

N-acetyl-D-glucosamine and D-glucosamine residues, 

provide specific structural changes. The chitosan 

biodegradability is affected by DD as well as by 

distribution of acetyl groups [56,57]. Chitosan is 

positively charged in strong acid conditions. It is 

characterized with a pKa of about 6.0, thus at pH less 

than about 6, chitosan’s amine groups are protonated 

providing polycationic behavior to chitosan as well as 

chitosan aquous solubility. The control of chitin and 

chitosan-based devices rate of degradation is of great 

interest since degradation is crutial in tissue regeneration 

applications and in biologically active molecules release 

applications.  

Finally, another natural PE, polylysine can be 

mentioned. Poly-L-lysine is an amino acid polymer with 

approximately one hydrobromide per lysine residue that 

allows the PLL to be in a crystalline form soluble in 

water. PLL is a positively charged linear polyelectrolyte 

characterized with pKa of about 10.5.  It is widely used 

as an attachment factor for cells, promoting cell 

adhesion by enhancing electrostatic interaction with 

negatively charged cell membrane.  

 

IMMOBILIZATION OF CELLS WITHIN 

MULTILAYER SHELLS 

 

Polyelectrolyte Multilayer Scaffolds Shells for Cell 

Maintenance 

Polyelectrolyte shells receive a great deal of attention as 

the constracts for scaffolds mimicking the extracellular 

matrix (ECM), supporting cell functioning, adhesion, 

proliferation, and differentiation for regulation factors 

delivery and/or new tissue development [82,83]. 
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Immobilization of cells within polyelectrolyte shells can 

provide a desired concentration of biological material in 

optimal space; enable directional cell growth for 

applications in biological processes regulation.   

The application of PE shells for scaffolding systems can 

be dedicated for different cells. E.g. the exploration of 

PE as the substrats for an optimum surface for 

exogenous primary neuronal cell growth has been 

performed [84,85]. Lastly it was reported that the 

ALG/PLL bilayer scaffolds allowed for survival of rat 

neurons in culture for over 2 weeks what can find 

application in controllable regeneration of neural 

networks in nanomedicine [14]. The NIH-3T3 

fibroblasts attachment was reported to be improved due 

to application as shell material the photocrosslinked 

hyaluronic acid  (HA) hydrogels modified with poly(L-

lysine) (PLL) and HA multilayer films made by the 

layer-by-layer (LbL) technique [86]. Some authors 

examined interactions between layered shells built of 

poly-(allylamine hydrochloride) (PAH) and poly-

(acrylic acid) (PAA) and the murine fibroblast NIH/3T3 

cell line [87].  Silva et al. immobilized human umbilical 

vein endothelial cells (HUVECs) within polielectrolyte 

multilayers build of chitosan and alginate and cultured 

for 24 hours [88].  

It can be noted that among different scaffolding 

materials, polymeric hydrogels characterized with 

biocompatibility and structural similarity to the tissue 

play an important role [89]. Unfortunately, hydrogel 

scaffolds are characterized by weak mechanical strength 

and lack of biological activity. Thus investigations have 

been performed on the materials with improved 

physicochemical properties and / or bioactive features. 

Recently, a great deal of attention has been paied to 

incorporation of metallic nanoparticles within 

biomaterials. It allows to produce nanocomposites with 

improved mechanical strength involving additional 

biological features like antibacterial and antiviral 

activity [90-92]. Some examples of the application of PE 

shells with additional features for scaffolding systems 

can be listed. E.g. the poly(hydroxyethyl methacrylate) 

hydrogel with incorporated AgNPs cytocompatible to 

mouse embryotic fibroblasts proved anti-bacterial 

function toward Staphylococcus aureus and Escherichia 

coli. Moreover, the experiments in vivo showed that the 

designed material ensured protection to immunological 

answer [93]. Another based on hydroxyethyl scaffold, 

hydroxyethyl cellulose with incorporated AgNPs was 

reported to maintain the growth and proliferation of 

human fibroblasts [94].  

It can be mentioned that besides metallic NPs some 

other materials may be engaged. e.g. hydroxyapatite 

(HAP), an inorganic mineral constituting the scaffolding 

of connective tissue, which is primarily a component of 

bone tissue, enamel, cementum and dentin [95-97].   

The analysis of interaction with eukaryotic and 

prokaryotic cells of PE shell with layers built on the 

basis of polyethyleneimine (PEI) and hydroxyapatite 

indicated the bacteriostatic influence of the PEI-based 

layer modified with AgNPs but also unmodified (PEI or 

PEI-Ag layer) in contact with microorganisms, in 

particular, B. subtilis, on the other hand, indicated that 

the hydroxyapatite layer is advantageous for contact 

with eukaryotic cells [98].   

Another example is agarose hydrogel with metallic NPs 

which can serve for cells maintenance with additional 

features. The agarose hydrogel with incorporated AgNPs 

coated with chitosan having anti-bacterial activity was 

reported to maintain the growth of HeLa, MiaPaCa2, 

and HEK cells for five or 16 days [99].   

The collagen based shells are also reported to fulfill the 

requirements for immobilization of cells. The collagen 

hydrogel composites with peptide-modified AuNPs and 

AgNPs were reported to increase proliferation, and the 

level of connexin-43 under electrical stimulation of rat 

neonatal cardiomyocytes [100]. Alginate and collagen I 

composite layered shell involving AgNPs and/or 

heparineto insert additional biological feature - 

antithrombotic activity showed maintainance of 

fibroblastic cells immobilized within the shell during 

seven day culture [101].   

Detection of Multilayered Shells 

The recognition of the individual layers presence within 

the multilayered shell may be performed using different 

methods.   
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Figure 1: SEM image of alginate
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immobilized on alginate
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A1-A4 - control, B1
layer (HAP_ALG 100); B5
(HAP_ALG 100), C1
hydroxyapatite layer (HAP_CHIT 100); C5
hydroxyapatite layer (HAP_CHIT 100); D1
chitosan-hydroxyapatite layer (HAP_CHIT 10); D5
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magnification 3000.

Visualization of immobilized neuronal cells

For visualization of the functional structure of neural 
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Cells are double
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fibrillary acidic protein (GFAP). Conjugation of the 
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555 and Alexa Fluor 488 allows to distinguish the 

objects using fluorescence microscopy. Figures

shows rat neural cells immobilized within the 

scaffolding bilayer shells respectively alginate/chitosan 

(ALG/CHIT) or alginate/poly

cultured (5% CO

 
 

                                                                                                   

SEM image of alginate-hydroxyapatite or chitosan
hydroxyapatite layered shells; human fibroblasts control or 
immobilized on alginate-hydroxyapatite or chitosan

shells after 7-day culture. Magnification from x500 to x3000.
control, B1-B4 - cells immobilized on alginate

layer (HAP_ALG 100); B5-B8 alginate
(HAP_ALG 100), C1-C4 - cells immobilized on chitosan

layer (HAP_CHIT 100); C5
hydroxyapatite layer (HAP_CHIT 100); D1

hydroxyapatite layer (HAP_CHIT 10); D5
layer (HAP_CHIT 10). Indexes 1,

magnification 1000; 3, 7 
magnification 3000. 
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fibrillary acidic protein (GFAP). Conjugation of the 
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ng fluorescence microscopy. Figures

shows rat neural cells immobilized within the 

scaffolding bilayer shells respectively alginate/chitosan 

T) or alginate/poly

cultured (5% CO2, 37ºC) two weeks in culture medium 
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stained with anti

associated protein 2 (MAP2) that identifies the majority 

eins of the neuronal skeleton, 

fibrillary acidic protein (GFAP). Conjugation of the 

fluorochromes respectively Alexa Fluor 

555 and Alexa Fluor 488 allows to distinguish the 

ng fluorescence microscopy. Figures

shows rat neural cells immobilized within the 

scaffolding bilayer shells respectively alginate/chitosan 

T) or alginate/poly-L-lysine (ALG/PLL) 

C) two weeks in culture medium 
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Visualization of immobilized neuronal cells 
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(Neurobasal medium supplemented with B27, 0.5 mM 

glutamine, 12.5 mM glutamate, and a penicillin 

/streptomycin mixture for first 6 days, then 

supplemented with B27, 0

penicillin /streptomycin mixture). 

The scaffolds ALG/CHIT; ALG/PLL were built of the 

basic layer (ALG) of negative charge of potential Zeta. 

The applied bilayers allowed for glial cells growth, 

supporting the neurons growth during 2

Figure 2
bilayered
of Alexa Fluor 555 dye exhibiting neurons presence may be observed, 
small amount of astrocytes exhibiting green fluorescence can be 
distinguished. Nuclei of neural cells are dyed in blue with DAPI.
 

Figure 3: 
bilayered ALG/PLL shell after 2
MAP 2 dye exhibiting neurons presence  may be observed, the blue 
neurons nuclei can be distinguished among the neuron
neural cells are dyed in blue with DAPI. 

Visualization of immobilized fibroblastic cells

Another approach for visualization of the functional 

structure of the cells is application of phalloidin and 

4’,6

Phalloidin is a toxin isolated from the fungus 

phalloides, which binds directly to filamentous actin (F

actin), which is abundant in fibroblasts. The DAPI
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glutamine, 12.5 mM glutamate, and a penicillin 

/streptomycin mixture for first 6 days, then 

supplemented with B27, 0

penicillin /streptomycin mixture). 

The scaffolds ALG/CHIT; ALG/PLL were built of the 

basic layer (ALG) of negative charge of potential Zeta. 

The applied bilayers allowed for glial cells growth, 

supporting the neurons growth during 2

Figure 2: The visualization of neural cells immobilized within 
bilayered ALG/CHIT shell after 2
of Alexa Fluor 555 dye exhibiting neurons presence may be observed, 
small amount of astrocytes exhibiting green fluorescence can be 
distinguished. Nuclei of neural cells are dyed in blue with DAPI.
 

Figure 3:  The visualization of neural cells immobilized within 
bilayered ALG/PLL shell after 2
MAP 2 dye exhibiting neurons presence  may be observed, the blue 
neurons nuclei can be distinguished among the neuron
neural cells are dyed in blue with DAPI. 

Visualization of immobilized fibroblastic cells

Another approach for visualization of the functional 

structure of the cells is application of phalloidin and 

4’,6-diamidino

Phalloidin is a toxin isolated from the fungus 

phalloides, which binds directly to filamentous actin (F

actin), which is abundant in fibroblasts. The DAPI
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(Neurobasal medium supplemented with B27, 0.5 mM 

glutamine, 12.5 mM glutamate, and a penicillin 

/streptomycin mixture for first 6 days, then 

supplemented with B27, 0

penicillin /streptomycin mixture). 

The scaffolds ALG/CHIT; ALG/PLL were built of the 

basic layer (ALG) of negative charge of potential Zeta. 

The applied bilayers allowed for glial cells growth, 

supporting the neurons growth during 2

The visualization of neural cells immobilized within 
ALG/CHIT shell after 2-

of Alexa Fluor 555 dye exhibiting neurons presence may be observed, 
small amount of astrocytes exhibiting green fluorescence can be 
distinguished. Nuclei of neural cells are dyed in blue with DAPI.

The visualization of neural cells immobilized within 
bilayered ALG/PLL shell after 2-week culture. The red fluorescence of 
MAP 2 dye exhibiting neurons presence  may be observed, the blue 
neurons nuclei can be distinguished among the neuron
neural cells are dyed in blue with DAPI. 

Visualization of immobilized fibroblastic cells

Another approach for visualization of the functional 

structure of the cells is application of phalloidin and 

diamidino-2-phenylindole (DAPI) nuclear stain. 

Phalloidin is a toxin isolated from the fungus 

phalloides, which binds directly to filamentous actin (F

actin), which is abundant in fibroblasts. The DAPI
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(Neurobasal medium supplemented with B27, 0.5 mM 

glutamine, 12.5 mM glutamate, and a penicillin 

/streptomycin mixture for first 6 days, then 

supplemented with B27, 0.5 mM glutamine and a 

penicillin /streptomycin mixture).  

The scaffolds ALG/CHIT; ALG/PLL were built of the 

basic layer (ALG) of negative charge of potential Zeta. 

The applied bilayers allowed for glial cells growth, 

supporting the neurons growth during 2-week culture. 

The visualization of neural cells immobilized within 
-week culture. The red fluorescence 

of Alexa Fluor 555 dye exhibiting neurons presence may be observed, 
small amount of astrocytes exhibiting green fluorescence can be 
distinguished. Nuclei of neural cells are dyed in blue with DAPI.

The visualization of neural cells immobilized within 
week culture. The red fluorescence of 

MAP 2 dye exhibiting neurons presence  may be observed, the blue 
neurons nuclei can be distinguished among the neuron
neural cells are dyed in blue with DAPI.  

Visualization of immobilized fibroblastic cells

Another approach for visualization of the functional 

structure of the cells is application of phalloidin and 

phenylindole (DAPI) nuclear stain. 

Phalloidin is a toxin isolated from the fungus 

phalloides, which binds directly to filamentous actin (F

actin), which is abundant in fibroblasts. The DAPI
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(Neurobasal medium supplemented with B27, 0.5 mM 

glutamine, 12.5 mM glutamate, and a penicillin 

/streptomycin mixture for first 6 days, then 

.5 mM glutamine and a 

The scaffolds ALG/CHIT; ALG/PLL were built of the 

basic layer (ALG) of negative charge of potential Zeta. 

The applied bilayers allowed for glial cells growth, 

week culture. 

The visualization of neural cells immobilized within 
week culture. The red fluorescence 

of Alexa Fluor 555 dye exhibiting neurons presence may be observed, 
small amount of astrocytes exhibiting green fluorescence can be 
distinguished. Nuclei of neural cells are dyed in blue with DAPI. 

The visualization of neural cells immobilized within 
week culture. The red fluorescence of 

MAP 2 dye exhibiting neurons presence  may be observed, the blue 
neurons nuclei can be distinguished among the neurons net. Nuclei of 

Visualization of immobilized fibroblastic cells 

Another approach for visualization of the functional 

structure of the cells is application of phalloidin and 

phenylindole (DAPI) nuclear stain.  

Phalloidin is a toxin isolated from the fungus - Amanita 

phalloides, which binds directly to filamentous actin (F

actin), which is abundant in fibroblasts. The DAPI
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The scaffolds ALG/CHIT; ALG/PLL were built of the 

basic layer (ALG) of negative charge of potential Zeta. 

The applied bilayers allowed for glial cells growth, 

week culture.  

 

week culture. The red fluorescence 
of Alexa Fluor 555 dye exhibiting neurons presence may be observed, 
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phalloides, which binds directly to filamentous actin (F-

actin), which is abundant in fibroblasts. The DAPI-

fluorochrome

added to the cells induce blue fluorescence emittance of 

cell nuclei under UV light. Blue DAPI fluorescence and 

red phalloidin fluorescence can be observed at  λ = 460 

÷ 500 nm and 

There a

structure of immobilized cells using fluorescence 

microscopy as well as morphology of the system layer

immobilized cells using SEM. Figures 1,4 and 

human dermal fibroblasts (HDF) immobilized within the

scaffolding layers based on alginate or chitosan with 

incorporated HAP NPs after one week culture (5% CO

37ºC). 

Figure 4

control (immobilized directly on a glass support)  or

alginate

culture.

(red), objective magnification 4x; A2 

objective magnification

20x objective magnification; A4 

objective magnification;

hydroxyapatite layer (HAP_ALG 100): B1 

(blue) and phall

stained with phalloidin, 4x objective magnification; B3 

with DAPI and phalloidin, 20x objective magnification; B4 

stained with phalloidin, 20x objective magnification;
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100): C1 

objective magnification; C2 

objective magnification; C3 

20x objective magnification; C4 

objective magnification;

hydroxyapatite layer (1:10) (HAP_CHIT 10): D1 

DAPI (blue) and with phalloidin (red), 4x objec

- cells stained with phalloidin, 4x objective magnification; D3 

stained with DAPI and phalloidin, 20x objective magnification; D4 

cells stained with phalloidin, 20x objective magnification.

 
                       

                                                                                                                                                                                                                                

fluorochrome solution specifically staining DNA when 

added to the cells induce blue fluorescence emittance of 

cell nuclei under UV light. Blue DAPI fluorescence and 

red phalloidin fluorescence can be observed at  λ = 460 

÷ 500 nm and λ = 570 nm respectively.  

There are some examples of visualization of functional 

structure of immobilized cells using fluorescence 

microscopy as well as morphology of the system layer

mmobilized cells using SEM. Figures 1,4 and 

human dermal fibroblasts (HDF) immobilized within the

scaffolding layers based on alginate or chitosan with 

incorporated HAP NPs after one week culture (5% CO

37ºC).  

Figure 4: Fluorescence microscopic image of human fibroblastic cells 

control (immobilized directly on a glass support)  or

alginate-hydroxyapatite or chitosan

culture. (A) control: A1 

(red), objective magnification 4x; A2 

objective magnification

20x objective magnification; A4 

objective magnification;

hydroxyapatite layer (HAP_ALG 100): B1 

(blue) and phalloidin (red), 4x objective magnification; B2 

stained with phalloidin, 4x objective magnification; B3 

with DAPI and phalloidin, 20x objective magnification; B4 

stained with phalloidin, 20x objective magnification;

immobilized in chitosan

100): C1 - cells stained with DAPI (blue) and with phalloidin (red), 4x 

objective magnification; C2 

objective magnification; C3 

20x objective magnification; C4 

objective magnification;

hydroxyapatite layer (1:10) (HAP_CHIT 10): D1 

DAPI (blue) and with phalloidin (red), 4x objec

cells stained with phalloidin, 4x objective magnification; D3 

stained with DAPI and phalloidin, 20x objective magnification; D4 

cells stained with phalloidin, 20x objective magnification.

 
 

                                                                                                   

solution specifically staining DNA when 

added to the cells induce blue fluorescence emittance of 

cell nuclei under UV light. Blue DAPI fluorescence and 

red phalloidin fluorescence can be observed at  λ = 460 

λ = 570 nm respectively.  

re some examples of visualization of functional 

structure of immobilized cells using fluorescence 

microscopy as well as morphology of the system layer

mmobilized cells using SEM. Figures 1,4 and 

human dermal fibroblasts (HDF) immobilized within the

scaffolding layers based on alginate or chitosan with 

incorporated HAP NPs after one week culture (5% CO

Fluorescence microscopic image of human fibroblastic cells 

control (immobilized directly on a glass support)  or

hydroxyapatite or chitosan-

control: A1 - cells stained with DAPI (blue) and phalloidin 

(red), objective magnification 4x; A2 

objective magnification; A3 - cells stained with DAPI and phalloidin, 

20x objective magnification; A4 - cells stained with phalloidin, 20x 

objective magnification; (B) cells immobilized on alginate

hydroxyapatite layer (HAP_ALG 100): B1 

oidin (red), 4x objective magnification; B2 

stained with phalloidin, 4x objective magnification; B3 

with DAPI and phalloidin, 20x objective magnification; B4 

stained with phalloidin, 20x objective magnification;

mobilized in chitosan-hydroxyapatite  layer (1: 100) (HAP_CHIT 

cells stained with DAPI (blue) and with phalloidin (red), 4x 

objective magnification; C2 - cells stained with phalloidin, 4x 

objective magnification; C3 - cells stained with DAPI and

20x objective magnification; C4 - cells stained with phalloidin, 20x 

objective magnification; (D) cells immobilized  in chitosan

hydroxyapatite layer (1:10) (HAP_CHIT 10): D1 

DAPI (blue) and with phalloidin (red), 4x objec

cells stained with phalloidin, 4x objective magnification; D3 

stained with DAPI and phalloidin, 20x objective magnification; D4 

cells stained with phalloidin, 20x objective magnification.
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solution specifically staining DNA when 

added to the cells induce blue fluorescence emittance of 

cell nuclei under UV light. Blue DAPI fluorescence and 

red phalloidin fluorescence can be observed at  λ = 460 

λ = 570 nm respectively.   

re some examples of visualization of functional 

structure of immobilized cells using fluorescence 

microscopy as well as morphology of the system layer

mmobilized cells using SEM. Figures 1,4 and 

human dermal fibroblasts (HDF) immobilized within the

scaffolding layers based on alginate or chitosan with 

incorporated HAP NPs after one week culture (5% CO

Fluorescence microscopic image of human fibroblastic cells 

control (immobilized directly on a glass support)  or 

-hydroxyapatite layers after 7

cells stained with DAPI (blue) and phalloidin 

(red), objective magnification 4x; A2 - cells stained with phalloidin, 4x 

cells stained with DAPI and phalloidin, 

cells stained with phalloidin, 20x 

cells immobilized on alginate

hydroxyapatite layer (HAP_ALG 100): B1 - cells stained with DAPI 

oidin (red), 4x objective magnification; B2 

stained with phalloidin, 4x objective magnification; B3 

with DAPI and phalloidin, 20x objective magnification; B4 

stained with phalloidin, 20x objective magnification;

hydroxyapatite  layer (1: 100) (HAP_CHIT 

cells stained with DAPI (blue) and with phalloidin (red), 4x 

cells stained with phalloidin, 4x 

cells stained with DAPI and

cells stained with phalloidin, 20x 

cells immobilized  in chitosan

hydroxyapatite layer (1:10) (HAP_CHIT 10): D1 - cells stained with 

DAPI (blue) and with phalloidin (red), 4x objective magnification; D2 

cells stained with phalloidin, 4x objective magnification; D3 

stained with DAPI and phalloidin, 20x objective magnification; D4 

cells stained with phalloidin, 20x objective magnification.
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solution specifically staining DNA when 

added to the cells induce blue fluorescence emittance of 

cell nuclei under UV light. Blue DAPI fluorescence and 

red phalloidin fluorescence can be observed at  λ = 460 

re some examples of visualization of functional 

structure of immobilized cells using fluorescence 

microscopy as well as morphology of the system layer

mmobilized cells using SEM. Figures 1,4 and 5 show 

human dermal fibroblasts (HDF) immobilized within the

scaffolding layers based on alginate or chitosan with 

incorporated HAP NPs after one week culture (5% CO
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cells stained with 

tive magnification; D2 

cells stained with phalloidin, 4x objective magnification; D3 - cells 

stained with DAPI and phalloidin, 20x objective magnification; D4 - 

cells stained with phalloidin, 20x objective magnification.  
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added to the cells induce blue fluorescence emittance of 

cell nuclei under UV light. Blue DAPI fluorescence and 

red phalloidin fluorescence can be observed at  λ = 460 
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Figure 5

alginate

7

layered shells.  x3000 (left column), x6000 (right column).

control, B1

(HAP_ALG 100); C1

hydroxyapatite layer (HAP_CHIT 100); D1

chitosan

 

For producing the shells a 30% aque

hydoxyapatite and solutions of natural polyelectrolytes

2.5% acetic acid) were used. The shells were made of a

alginate (0.05% in 0.9% NaCl) and chitosan (0.1% in 

mixture of a hydroxyapatite solution with an alginate 

solution in the ratio 1: 100 (HAP_ALG100 layer) or a 

hydroxyapatite solution with a chitosan solution in the 

ratio 1: 100 (HAP_CHIT100 layer) or in a ratio of 1:10 

(HAP_CHIT10 layer). The solutions were

the coverslips and dried at room temperature for 24 

hours. After one week, the cultures were analysed 

usimng fluorescence microscope or SEM.  
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Figure 5: SEM image of human 

alginate-hydroxyapatite or chitosan

7-day culture; alginate

layered shells.  x3000 (left column), x6000 (right column).

control, B1-B2 - cells immobilized on alginate

(HAP_ALG 100); C1

hydroxyapatite layer (HAP_CHIT 100); D1

chitosan-hydroxyapatite layer (HAP_CHIT 10).

 

For producing the shells a 30% aque

hydoxyapatite and solutions of natural polyelectrolytes

2.5% acetic acid) were used. The shells were made of a

alginate (0.05% in 0.9% NaCl) and chitosan (0.1% in 

mixture of a hydroxyapatite solution with an alginate 

solution in the ratio 1: 100 (HAP_ALG100 layer) or a 

hydroxyapatite solution with a chitosan solution in the 

ratio 1: 100 (HAP_CHIT100 layer) or in a ratio of 1:10 

(HAP_CHIT10 layer). The solutions were

the coverslips and dried at room temperature for 24 

hours. After one week, the cultures were analysed 

usimng fluorescence microscope or SEM.  
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SEM image of human fibroblasts control or immobilized on 

hydroxyapatite or chitosan

day culture; alginate-hydroxyapatite or chitosan

layered shells.  x3000 (left column), x6000 (right column).

cells immobilized on alginate

(HAP_ALG 100); C1-C2 - cells immobilized on chitosan

hydroxyapatite layer (HAP_CHIT 100); D1

hydroxyapatite layer (HAP_CHIT 10).

For producing the shells a 30% aque

hydoxyapatite and solutions of natural polyelectrolytes

2.5% acetic acid) were used. The shells were made of a

alginate (0.05% in 0.9% NaCl) and chitosan (0.1% in 

mixture of a hydroxyapatite solution with an alginate 

solution in the ratio 1: 100 (HAP_ALG100 layer) or a 

hydroxyapatite solution with a chitosan solution in the 

ratio 1: 100 (HAP_CHIT100 layer) or in a ratio of 1:10 

(HAP_CHIT10 layer). The solutions were

the coverslips and dried at room temperature for 24 

hours. After one week, the cultures were analysed 

usimng fluorescence microscope or SEM.  
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hydroxyapatite or chitosan-hydroxyapatite layered shells after 

hydroxyapatite or chitosan-hydroxyapatite 

layered shells.  x3000 (left column), x6000 (right column).

cells immobilized on alginate-hydroxyapatite layer 

cells immobilized on chitosan

hydroxyapatite layer (HAP_CHIT 100); D1-D2 - cells immobilized on 

hydroxyapatite layer (HAP_CHIT 10). 

For producing the shells a 30% aqueous solution of 

hydoxyapatite and solutions of natural polyelectrolytes

2.5% acetic acid) were used. The shells were made of a

alginate (0.05% in 0.9% NaCl) and chitosan (0.1% in 

mixture of a hydroxyapatite solution with an alginate 

solution in the ratio 1: 100 (HAP_ALG100 layer) or a 

hydroxyapatite solution with a chitosan solution in the 

ratio 1: 100 (HAP_CHIT100 layer) or in a ratio of 1:10 

(HAP_CHIT10 layer). The solutions were

the coverslips and dried at room temperature for 24 

hours. After one week, the cultures were analysed 

usimng fluorescence microscope or SEM.  
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fibroblasts control or immobilized on 

hydroxyapatite layered shells after 

hydroxyapatite 

layered shells.  x3000 (left column), x6000 (right column). A1-A2 - 

hydroxyapatite layer 

cells immobilized on chitosan-

cells immobilized on 

ous solution of 

hydoxyapatite and solutions of natural polyelectrolytes

2.5% acetic acid) were used. The shells were made of a

alginate (0.05% in 0.9% NaCl) and chitosan (0.1% in 

mixture of a hydroxyapatite solution with an alginate 

solution in the ratio 1: 100 (HAP_ALG100 layer) or a 

hydroxyapatite solution with a chitosan solution in the 

ratio 1: 100 (HAP_CHIT100 layer) or in a ratio of 1:10 

(HAP_CHIT10 layer). The solutions were deposited on 

the coverslips and dried at room temperature for 24 

hours. After one week, the cultures were analysed 

usimng fluorescence microscope or SEM.   
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hydroxyapatite layer 

cells immobilized on 

hydoxyapatite and solutions of natural polyelectrolytes- 

2.5% acetic acid) were used. The shells were made of a 

alginate (0.05% in 0.9% NaCl) and chitosan (0.1% in 

mixture of a hydroxyapatite solution with an alginate 

solution in the ratio 1: 100 (HAP_ALG100 layer) or a 

hydroxyapatite solution with a chitosan solution in the 

ratio 1: 100 (HAP_CHIT100 layer) or in a ratio of 1:10 

deposited on 

the coverslips and dried at room temperature for 24 

hours. After one week, the cultures were analysed 

Visualization of morphology of shell

systems

SEM analysis allows to examine morph

system of cells immobilized within shell. Figure 1 shows 

SEM image of human fibroblasts control (immobilized 

directly on a glass support) or immobilized on alginate

hydroxyapatite or chitosan

day cultur

the control or immobilized on the shells cells at x3000 

and x6000 magnification. 

The SEM image in Figure

spindle

The cells obtain generall

membranes, which can be seen in Fig. 1 B1

D1

It can be noted that the HAP_CHIT10 layer ensures 

higher cell growth comparing with HAP_CHIT100 

layer. However, the layer HAP_CHIT10 characterized 

by impaired integrity. 

The fluorescence microscopic observations revealed 

morphological differences between 

grown on coverslips) and the cells grown on the 

prepared scaffolding shells (Fig

control, the fibrillar forms of actin that make up the 

fibers are arranged in one direction, and cell growth is 

intense (

HAP_ALG 100 scaffold, the cell growth is slightly 

weaker, individual cell nuclei can be distinguished 

(Figure 

arrangement is generally uniform (

HAP_CHIT 100 is used, 

dimensional, polarized in many directions (

C2, C3, C4). Reducing the proportion of chitosan in the 

HAP_CHIT10 scaffold weakens this effect, 

obtain a three

polariz

stronger cell growth comparing with control and the 

other shells. The rapid growth of cells is confirmed by 

the SEM microphotograph (

5 D1, D2) showing the characteristic clusters formed 

proliferating cells. Regulated polarity of cell growth can 

be an important element in scaffold technology for 

controlled cell growth.

 
                       

                                                                                                                                                                                                                                

Visualization of morphology of shell

systems 

SEM analysis allows to examine morph

system of cells immobilized within shell. Figure 1 shows 

SEM image of human fibroblasts control (immobilized 

directly on a glass support) or immobilized on alginate

hydroxyapatite or chitosan

day culture. Figure 5

the control or immobilized on the shells cells at x3000 

and x6000 magnification. 

The SEM image in Figure

spindle-shaped characteristic form of fibroblastoid cells. 

The cells obtain generall

membranes, which can be seen in Fig. 1 B1

D1-D4 as well as Figure

It can be noted that the HAP_CHIT10 layer ensures 

higher cell growth comparing with HAP_CHIT100 

layer. However, the layer HAP_CHIT10 characterized 

by impaired integrity. 

The fluorescence microscopic observations revealed 

morphological differences between 

grown on coverslips) and the cells grown on the 

prepared scaffolding shells (Fig

control, the fibrillar forms of actin that make up the 

fibers are arranged in one direction, and cell growth is 

intense (Figure 

HAP_ALG 100 scaffold, the cell growth is slightly 

weaker, individual cell nuclei can be distinguished 

Figure 4 B1, B3). The direction of the fibers 

arrangement is generally uniform (

HAP_CHIT 100 is used, 

dimensional, polarized in many directions (

C2, C3, C4). Reducing the proportion of chitosan in the 

HAP_CHIT10 scaffold weakens this effect, 

obtain a three-dimensional structure, but more ordered, 

polarized in one direction (

stronger cell growth comparing with control and the 

other shells. The rapid growth of cells is confirmed by 

the SEM microphotograph (

5 D1, D2) showing the characteristic clusters formed 

proliferating cells. Regulated polarity of cell growth can 

be an important element in scaffold technology for 

controlled cell growth.

 
 

                                                                                                   

Visualization of morphology of shell

SEM analysis allows to examine morph

system of cells immobilized within shell. Figure 1 shows 

SEM image of human fibroblasts control (immobilized 

directly on a glass support) or immobilized on alginate

hydroxyapatite or chitosan-hydroxyapatite layers after 7

e. Figure 5 is a derivative of 

the control or immobilized on the shells cells at x3000 

and x6000 magnification.  

The SEM image in Figure 1 A1

shaped characteristic form of fibroblastoid cells. 
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weaker, individual cell nuclei can be distinguished 

4 B1, B3). The direction of the fibers 
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HAP_CHIT 100 is used, the structure becomes three

dimensional, polarized in many directions (

C2, C3, C4). Reducing the proportion of chitosan in the 

HAP_CHIT10 scaffold weakens this effect, 

dimensional structure, but more ordered, 
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stronger cell growth comparing with control and the 

other shells. The rapid growth of cells is confirmed by 

the SEM microphotograph (

5 D1, D2) showing the characteristic clusters formed 

proliferating cells. Regulated polarity of cell growth can 

be an important element in scaffold technology for 

controlled cell growth. 
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CONCLUSIONS  

Polyelectrolyte shells as elements of the scaffolds for 

immobilization of cells give ability to adjust cells  

Interaction with material at material-host interface for 

tissue engineering purposes. It can be noted that layered 

shells combine some problems with material stability.  

The PE materials may undergo deterioration by 

endocytosis. Also, dissociation to the surrounding 

medium or body fluids may occured. Thus, only the 

temporary usability of the systems may be considered.  

It can be assumed  that the future work on the systems of 

layered shells with immobilized cells will concentrate on 

functional materials to improve effectiveness of cell 

function maintaince and to involve biological activity as 

well as novel cell types.  
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