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INTRODUCTION 

Due to their high conductivity, excellent stability and 

reversible electrochemical properties, polymer-based 

conducting materials have attracted much attention [1-

3]. They can be used in tissue engineering [4], energy 

storage [5,6], and medical applications [7]. The 

electrochemical sensors developed from conducting 

materials help with the minimization of organic 

contaminants on the surface, which affect the detection 

of biomolecules. Moreover, it was reported that 

polymer-based sensors demonstrate antimicrobial 

activity, which is required for biomedical applications 

[8]. Electrodes modified by redox conducting films, in 

combination with nanoparticles, can be used for the 

detection of enzymes, and other biological molecules 

[9].  Further studies show promise in polymer electrodes 

carrying conductors such as carbon nanotubes to 

efficiently improve the detection of molecules [10,11]. It 

was also reported that the incorporation of carbon 

nanotubes within the resulting electropolymerized 

polymers enhances the electrical/thermal conductivities, 

and the stability of the films on the surfaces of 

electrodes [12]. Sensors based on conducting materials  

 

 

and nanomaterials present several advantages such as 

lower limit of detection (LOD) of target molecules, a 

rapid response, and a better signal to noise ratio [13]. 

Polythiophenes are excellent conducting materials and 

have been used for the detection of several biomolecules 

such as oligonucleotides and amino acids. They are 

highly conducting, stable at both states on electrode 

surface, and their chemistry is well-established [14].  

In this review, we describe the utilization of 

polythiophene-based sensors over the last decade for the 

detection of pathogens such as E. coli [15] and 

Salmonella enterica [16]. Changes in optical and 

electrochemical properties of polythiophenes surfaces 

will be discussed. 

POLYTHIOPHENES 

Different methods have been reported for the preparation 

of polythiophenes. They can be obtained via cross-

coupling reaction (Scheme 1A) using a catalyst [17,18], 

chemical oxidation using FeCl3 or NOBF4 as oxidizing 

agents (Scheme 1B) [19,20], and electrochemical 

polymerization beyond the oxidation potential of the 

monomers on platinum (Pt) or glassy carbon electrodes 

(GCE) (Scheme 1C) [21,22]. 

ABSTRACT 

The utility of polythiophenes as chemical and electrochemical sensors is assessed across the literature for the last decade. 
Polythiophenes can be used as an alternative method to traditional surface modifications for the detection of 
biomolecules. Moreover, polythiophenes amplify the optical and electrochemical signals allowing the facile recognition 
of target molecules. Their high conductivity and stability facilitate the design of polythiophene-based sensors for the 
detection of pathogens. The analytes observed in particular are Escherichia coli (E. coli) and Salmonella enterica. The 
optical and electrochemical property changes of polythiophenes resulting from the interactions with pathogens will be 
investigated. 
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Scheme 1: Synthesis pathway of polythiophenes 

The electrochemical oxidation using Pt or GCE 

electrode is the method commonly used for the 

deposition of polythiophenes on electrodes surfaces. 

This method is easy to use, gives rapid results and 

allows direct deposition of doped polythiophenes on the 

surface of the electrode, which facilitates the 

characterization of the electrochemical and optical 

properties. 

DETECTION OF E. COLI 

Food contaminated with bacterial pathogens is a leading 

cause of death worldwide [23]. E. coli is an important 

bacterial pathogen to be considered when developing a 

rapid and efficient method of detection due to their 

potential for outbreaks [24,25,26]. The detection of 

bacteria is deemed excessively time consuming, and thus 

the use of polythiophene derivatives based sensors 

permit a fast response. 

Yan et al. described sensor based-polythiophenes for the 

detection of microorganisms and bacterium [27] in 

sources of drinking water using fluorescence resonance 

energy transfer (FRET), where polythiophene 

derivatives (PTP) and the [5,10,15,20-tetrakis(4-

(trimethylammonio)-phenyl)-21H,23H-porphine 

tetratosylate] moiety (TMP) act as an anionic donor and 

a cationic receptor, respectively (Scheme 1). PTP and 

TMP were characterized by UV-vis and fluorescence 

emission spectra. The absorption maximum was found 

to be 438 nm for PTP and 412 nm (Soret band) for TMP. 

The emission maxima were found to be 560 and 655 nm 

for PTP and TMP, respectively. The excitation at 440 

nm of the complex PTP/TMP shows a decrease of the 

florescence intensity of PTP and an increase of the one 

of TMP. At a concentration of 0.2 10-6 M of TMP, PTP 

was completely quenched. The FRET ratio (I655 nm/I560 

nm) of the PTP/TMP was also increased. In the absence 

of E. coli bacteria, the optical signal of TMP has been 

amplified 5 times by PTP, which is due to the strong 

electrostatic interactions between anionic and cationic 

motifs.  Figure 1a displays the fluorescence spectra of 

PTP/TPM complex in aqueous solution in the absence 

and presence of E. coli.  The emission spectra of the 

PTP/TPM complex have also been tested in double 

distilled water (ddH2O) and in tap-drinking water with 

an excitation wavelength of 440 nm as shown in figures 

1c and 1e. In the presence of E. coli, the fluorescence 

intensity of TPM decreases whereas the fluorescence 

intensity of PTP increases. This behaviour is due to the 

electrostatic and hydrophobic interactions between the 

bacteria and TPM creating a gap between PTP and TPM, 

which leads also to a decrease of the FRET ratio (I655 

nm/I560 nm) of the PTP/TPM complex.  The FRET ratio 

reaches a plateau after CFU goes beyond 1.75 × 106 

mL−1  for ddH2O (Figure 1d) and 20 × 106 mL−1 for tap-

drinking water (Figure 1f). Moreover, the emission color 

changed from red to yellow after addition of E. coli 

(Figure 1b).  
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Figure 1: (a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc

spectra obtained during the process of successive addition of E. coli in ddH

 

Additionally, the adsorption of E. coli on TMP has been 

confirmed by phase

microscope images. Using poly[3

triethylamino-

hydrochloride] (PMNT) E. coli has been detected in 

ethanol aqueous solution. After gradual addition of E. 

coli, the fluorescence emission intensity of PMNT 

decreased as depicted in figure 2a. The fluorescence 

quenching efficiencies (1 

the presence of E. coli and reached a maximum value of 

3.0 × 105 CFU/mL [28].

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

                                                                                                                             

: Diagram representing the strategic approach to using FRET to det

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
spectra obtained during the process of successive addition of E. coli in ddH

Additionally, the adsorption of E. coli on TMP has been 

confirmed by phase-contrast and fluorescen

microscope images. Using poly[3

-1′-propyloxy)

hydrochloride] (PMNT) E. coli has been detected in 

ethanol aqueous solution. After gradual addition of E. 

coli, the fluorescence emission intensity of PMNT 

eased as depicted in figure 2a. The fluorescence 

quenching efficiencies (1 − I/I

the presence of E. coli and reached a maximum value of 

CFU/mL [28]. 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

                                                                                                                             

: Diagram representing the strategic approach to using FRET to det

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
spectra obtained during the process of successive addition of E. coli in ddH

in tap water. (f) FRET ratio. Reproduced with permission from [27].

Additionally, the adsorption of E. coli on TMP has been 

contrast and fluorescen

microscope images. Using poly[3

propyloxy)-4-methyl-2,5

hydrochloride] (PMNT) E. coli has been detected in 

ethanol aqueous solution. After gradual addition of E. 

coli, the fluorescence emission intensity of PMNT 

eased as depicted in figure 2a. The fluorescence 

− I/I0) of PMNT enhanced by 

the presence of E. coli and reached a maximum value of 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 2
                                                                                                                             

                                                                                                                             

: Diagram representing the strategic approach to using FRET to det

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
spectra obtained during the process of successive addition of E. coli in ddH

in tap water. (f) FRET ratio. Reproduced with permission from [27].

Additionally, the adsorption of E. coli on TMP has been 

contrast and fluorescen

microscope images. Using poly[3-(3′-N,N,N

2,5-thiophene 

hydrochloride] (PMNT) E. coli has been detected in 

ethanol aqueous solution. After gradual addition of E. 

coli, the fluorescence emission intensity of PMNT 

eased as depicted in figure 2a. The fluorescence 

) of PMNT enhanced by 

the presence of E. coli and reached a maximum value of 

2, Iss 1 
                                                                                                                                                   

                                                                                                                             

 

: Diagram representing the strategic approach to using FRET to detect bacteria in drinking water, 

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
spectra obtained during the process of successive addition of E. coli in ddH2O. (d) FRET rat

in tap water. (f) FRET ratio. Reproduced with permission from [27].

Additionally, the adsorption of E. coli on TMP has been 

contrast and fluorescence 

N,N,N-

hydrochloride] (PMNT) E. coli has been detected in 

ethanol aqueous solution. After gradual addition of E. 

coli, the fluorescence emission intensity of PMNT 

eased as depicted in figure 2a. The fluorescence 

) of PMNT enhanced by 

the presence of E. coli and reached a maximum value of 

The observed fluorescence quenching is due to the 

electrostatic interactions between the negatively charged 

E. coli and the cationic PMNT, which was validated by 

phase

(Figures 2c, d). Moreover, PMNT/polyisocyani

hydrogels have been found to have efficient 

antimicrobial activity toward a variety of pathogens 

including E. coli [29].  

Similar results have been reported using a water

sensor based on cationic poly(3

metylthiophene). The for

 
                       

                                                                                                                                                                                                                               

ect bacteria in drinking water, 

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
O. (d) FRET ratio (e) Fluorescence emission spectra in the presence of E. coli 

in tap water. (f) FRET ratio. Reproduced with permission from [27].

The observed fluorescence quenching is due to the 

electrostatic interactions between the negatively charged 

E. coli and the cationic PMNT, which was validated by 

phase-contrast and fluorescence microscope images 

(Figures 2c, d). Moreover, PMNT/polyisocyani

hydrogels have been found to have efficient 

antimicrobial activity toward a variety of pathogens 

including E. coli [29].  

Similar results have been reported using a water

sensor based on cationic poly(3

metylthiophene). The for

 
 

                                                                                                  

ect bacteria in drinking water, Reproduced with permission from [27].

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
io (e) Fluorescence emission spectra in the presence of E. coli 

in tap water. (f) FRET ratio. Reproduced with permission from [27]. 

The observed fluorescence quenching is due to the 

electrostatic interactions between the negatively charged 

E. coli and the cationic PMNT, which was validated by 

contrast and fluorescence microscope images 

(Figures 2c, d). Moreover, PMNT/polyisocyani

hydrogels have been found to have efficient 

antimicrobial activity toward a variety of pathogens 

including E. coli [29].   

Similar results have been reported using a water

sensor based on cationic poly(3

metylthiophene). The formation of aggregates between 

 Review Article 
 

                                                                                                  

Reproduced with permission from [27].

 

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescenc
io (e) Fluorescence emission spectra in the presence of E. coli 

The observed fluorescence quenching is due to the 

electrostatic interactions between the negatively charged 

E. coli and the cationic PMNT, which was validated by 

contrast and fluorescence microscope images 

(Figures 2c, d). Moreover, PMNT/polyisocyani

hydrogels have been found to have efficient 

antimicrobial activity toward a variety of pathogens 

Similar results have been reported using a water

sensor based on cationic poly(3

mation of aggregates between 

Review Article  
  

                                                                                                  

 

Reproduced with permission from [27]. 

(a) Fluorescence intensity of the PTP/TMP complex in the presence and absence of E. coli. (b) UV vis spectra. (c) Fluorescence emission 
io (e) Fluorescence emission spectra in the presence of E. coli 

The observed fluorescence quenching is due to the 

electrostatic interactions between the negatively charged 

E. coli and the cationic PMNT, which was validated by 

contrast and fluorescence microscope images 

(Figures 2c, d). Moreover, PMNT/polyisocyanide hybrid 

hydrogels have been found to have efficient 

antimicrobial activity toward a variety of pathogens 

Similar results have been reported using a water-soluble 

sensor based on cationic poly(3-methoxy-4

mation of aggregates between 

                                                                                                   

io (e) Fluorescence emission spectra in the presence of E. coli 

The observed fluorescence quenching is due to the 

electrostatic interactions between the negatively charged 

E. coli and the cationic PMNT, which was validated by 

contrast and fluorescence microscope images 

de hybrid 

hydrogels have been found to have efficient 

antimicrobial activity toward a variety of pathogens 

soluble 

4-

mation of aggregates between 



Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

 
Carruthers
 

the E. coli and the polythiophenes yield to the 

fluorescence quenching (Scheme 2). In this study, it was 

found that the fluorescence quenching is influenced by 

 

Other cationic polythiophen

imidazolium/ammonium

poly(hexylthiophene)  demonstrated excellent inhibition 

of E. coli bacteria by 97.5% [31,32]. Ammonium 

functionalized polythiophenes have been utilized to 

detect a variety of bacteria including S. aureus, S. 

epidermidis and P. aeruginosa [33

Another study performed by Sinsinbar 

use of an unlabelled peptide with a polythiophene acetic 

acid (PTAA) for rapid detection of 

water. It was noted that the incorporation of an 

unlabelled peptide, which correspond

membrane protease (OmpT) of 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

 
Carruthers C                                                                                                                             
 

the E. coli and the polythiophenes yield to the 

fluorescence quenching (Scheme 2). In this study, it was 

found that the fluorescence quenching is influenced by 

Figure 2: (a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 
Fluorescence quenching efficiencies of PMNT with different amounts of E. coli (c) Phase

 

Other cationic polythiophen

imidazolium/ammonium

poly(hexylthiophene)  demonstrated excellent inhibition 

of E. coli bacteria by 97.5% [31,32]. Ammonium 

functionalized polythiophenes have been utilized to 

detect a variety of bacteria including S. aureus, S. 

epidermidis and P. aeruginosa [33

Another study performed by Sinsinbar 

use of an unlabelled peptide with a polythiophene acetic 

acid (PTAA) for rapid detection of 

water. It was noted that the incorporation of an 

unlabelled peptide, which correspond

membrane protease (OmpT) of 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

                                                                                                                             

the E. coli and the polythiophenes yield to the 

fluorescence quenching (Scheme 2). In this study, it was 

found that the fluorescence quenching is influenced by 

Scheme 2

(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 
Fluorescence quenching efficiencies of PMNT with different amounts of E. coli (c) Phase

Other cationic polythiophen

imidazolium/ammonium 

poly(hexylthiophene)  demonstrated excellent inhibition 

of E. coli bacteria by 97.5% [31,32]. Ammonium 

functionalized polythiophenes have been utilized to 

detect a variety of bacteria including S. aureus, S. 

epidermidis and P. aeruginosa [33

Another study performed by Sinsinbar 

use of an unlabelled peptide with a polythiophene acetic 

acid (PTAA) for rapid detection of 

water. It was noted that the incorporation of an 

unlabelled peptide, which correspond

membrane protease (OmpT) of 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

                                                                                                                             

the E. coli and the polythiophenes yield to the 

fluorescence quenching (Scheme 2). In this study, it was 

found that the fluorescence quenching is influenced by 

Scheme 2: Interactions of E. coli/polythiophenes. 

(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 
Fluorescence quenching efficiencies of PMNT with different amounts of E. coli (c) Phase

PMNT/E. coli complex. Reproduced with permission from [28].

Other cationic polythiophenes such as 

 

poly(hexylthiophene)  demonstrated excellent inhibition 

of E. coli bacteria by 97.5% [31,32]. Ammonium 

functionalized polythiophenes have been utilized to 

detect a variety of bacteria including S. aureus, S. 

epidermidis and P. aeruginosa [33].  

Another study performed by Sinsinbar et al

use of an unlabelled peptide with a polythiophene acetic 

acid (PTAA) for rapid detection of E. coli

water. It was noted that the incorporation of an 

unlabelled peptide, which corresponds to the outer

membrane protease (OmpT) of E. coli

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 2
                                                                                                                             

                                                                                                                             

the E. coli and the polythiophenes yield to the 

fluorescence quenching (Scheme 2). In this study, it was 

found that the fluorescence quenching is influenced by 

Interactions of E. coli/polythiophenes. 

(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 
Fluorescence quenching efficiencies of PMNT with different amounts of E. coli (c) Phase

PMNT/E. coli complex. Reproduced with permission from [28].

es such as 

 functionalized 

poly(hexylthiophene)  demonstrated excellent inhibition 

of E. coli bacteria by 97.5% [31,32]. Ammonium 

functionalized polythiophenes have been utilized to 

detect a variety of bacteria including S. aureus, S. 

et al. showed the 

use of an unlabelled peptide with a polythiophene acetic 

E. coli in drinking 

water. It was noted that the incorporation of an 

s to the outer

E. coli improves the 

2, Iss 1 
                                                                                                                                                   

                                                                                                                             

the E. coli and the polythiophenes yield to the 

fluorescence quenching (Scheme 2). In this study, it was 

found that the fluorescence quenching is influenced by 

the temperature, the presence of salts, and other 

contaminants in d

Interactions of E. coli/polythiophenes. Reproduced with permission from [30].

 
(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 

Fluorescence quenching efficiencies of PMNT with different amounts of E. coli (c) Phase
PMNT/E. coli complex. Reproduced with permission from [28].

es such as 

functionalized 

poly(hexylthiophene)  demonstrated excellent inhibition 

of E. coli bacteria by 97.5% [31,32]. Ammonium 

functionalized polythiophenes have been utilized to 

detect a variety of bacteria including S. aureus, S. 

showed the 

use of an unlabelled peptide with a polythiophene acetic 

in drinking 

water. It was noted that the incorporation of an 

s to the outer-

improves the 

selectivity of previous sensors

noted to be present at the surface of all wild

of the bacterial pathogen.  Screening libraries have been 

exploited to det

detection of 

(LL37

because it offered an ideal catalytic efficiency. 

PTAA has an absorption maximum at 450 nm and 

displays a fluores

after excitation at 420 nm. After addition of peptide 

LL37

the fluorescence intensity has been observed. These 

changes in the optical properties of PTAA in the 

 
                       

                                                                                                                                                                                                                               

the temperature, the presence of salts, and other 

contaminants in d

Reproduced with permission from [30].

(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 
Fluorescence quenching efficiencies of PMNT with different amounts of E. coli (c) Phase-contrast image and (d) fluorescence microscopy image of the 

PMNT/E. coli complex. Reproduced with permission from [28].

selectivity of previous sensors

noted to be present at the surface of all wild

of the bacterial pathogen.  Screening libraries have been 

exploited to det

detection of E. coli

LL37FRRV) was the preferred fragment for this study 

because it offered an ideal catalytic efficiency. 

PTAA has an absorption maximum at 450 nm and 

displays a fluores

after excitation at 420 nm. After addition of peptide 

LL37FRRV, a blue shift accompanied with an increase of 

the fluorescence intensity has been observed. These 

changes in the optical properties of PTAA in the 

 
 

                                                                                                  

the temperature, the presence of salts, and other 

contaminants in drinking water [30].

Reproduced with permission from [30].

(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition 
contrast image and (d) fluorescence microscopy image of the 

PMNT/E. coli complex. Reproduced with permission from [28]. 

selectivity of previous sensors

noted to be present at the surface of all wild

of the bacterial pathogen.  Screening libraries have been 

exploited to determine the ideal peptide sequence for the 

E. coli.  CLLGDFFRRVKEKIG peptide 

) was the preferred fragment for this study 

because it offered an ideal catalytic efficiency. 

PTAA has an absorption maximum at 450 nm and 

displays a fluorescence emission maximum at 550 nm 

after excitation at 420 nm. After addition of peptide 

, a blue shift accompanied with an increase of 

the fluorescence intensity has been observed. These 

changes in the optical properties of PTAA in the 

 Review Article 
 

                                                                                                  

the temperature, the presence of salts, and other 

rinking water [30]. 

 

 
Reproduced with permission from [30]. 

 

(a) Fluorescence emission spectra of PMNT in a 40% ethanol aqueous solution with the successive addition of an E. coli suspension. (b) 
contrast image and (d) fluorescence microscopy image of the 

selectivity of previous sensors [34]. These proteases are 

noted to be present at the surface of all wild

of the bacterial pathogen.  Screening libraries have been 

ermine the ideal peptide sequence for the 

.  CLLGDFFRRVKEKIG peptide 

) was the preferred fragment for this study 

because it offered an ideal catalytic efficiency. 

PTAA has an absorption maximum at 450 nm and 

cence emission maximum at 550 nm 

after excitation at 420 nm. After addition of peptide 

, a blue shift accompanied with an increase of 

the fluorescence intensity has been observed. These 

changes in the optical properties of PTAA in the 

Review Article  
  

                                                                                                  

the temperature, the presence of salts, and other 

of an E. coli suspension. (b) 
contrast image and (d) fluorescence microscopy image of the 

[34]. These proteases are 

noted to be present at the surface of all wild-type strains 

of the bacterial pathogen.  Screening libraries have been 

ermine the ideal peptide sequence for the 

.  CLLGDFFRRVKEKIG peptide 

) was the preferred fragment for this study 

because it offered an ideal catalytic efficiency.  

PTAA has an absorption maximum at 450 nm and 

cence emission maximum at 550 nm 

after excitation at 420 nm. After addition of peptide 

, a blue shift accompanied with an increase of 

the fluorescence intensity has been observed. These 

changes in the optical properties of PTAA in the 

                                                                                                   

the temperature, the presence of salts, and other 

contrast image and (d) fluorescence microscopy image of the 

[34]. These proteases are 

type strains 

of the bacterial pathogen.  Screening libraries have been 

ermine the ideal peptide sequence for the 

.  CLLGDFFRRVKEKIG peptide 

) was the preferred fragment for this study 

PTAA has an absorption maximum at 450 nm and 

cence emission maximum at 550 nm 

after excitation at 420 nm. After addition of peptide 

, a blue shift accompanied with an increase of 

the fluorescence intensity has been observed. These 

changes in the optical properties of PTAA in the 



Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

 
Carruthers
 

presence of L

the geometry adopted by the PTAA backbone. PTAA is 

a 

planar conformation, which was lost after addition of 

LL37

to 

geometry of polymer backbone (non

a blue shift of the PTAA absorption, and an increase of 

the fluorescence emission intensity by 200%.  It was 

reported that cleaved LL37

optical properties of PTAA. The sensor PTAA/ 

LL37

stains as presented in Figure 3.  In figures 3B, Black, E. 

coli BL21 was used as a negative control and did not 

show any change in the fluorescence in

The change of PTAA/

perceived with the naked eye (Figure 3A).  Moreover, all 

E. coli strains cause a significant reduction in the 

fluorescence intensity of PTAA by cleaving the peptide 

LL37

been rapidly detected in water.

Two electrochemical/Quartz Crystal Microbalance 

(QCM) sensors for the detection of E.coli bacteria based 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

 
Carruthers C                                                                                                                             
 

presence of LL37

the geometry adopted by the PTAA backbone. PTAA is 

a -conjugated system in which its backbone has a 

planar conformation, which was lost after addition of 

LL37FRRV. The peptide LL37

to PTAA, resulting in a change of the conformation 

geometry of polymer backbone (non

a blue shift of the PTAA absorption, and an increase of 

the fluorescence emission intensity by 200%.  It was 

reported that cleaved LL37

optical properties of PTAA. The sensor PTAA/ 

LL37FRRV has been used to recognize different E. coli 

stains as presented in Figure 3.  In figures 3B, Black, E. 

coli BL21 was used as a negative control and did not 

show any change in the fluorescence in

The change of PTAA/

perceived with the naked eye (Figure 3A).  Moreover, all 

E. coli strains cause a significant reduction in the 

fluorescence intensity of PTAA by cleaving the peptide 

LL37FRRV. Using this met

been rapidly detected in water.

Two electrochemical/Quartz Crystal Microbalance 

(QCM) sensors for the detection of E.coli bacteria based 

Figure 3. A) E. coli sensing using PTAA
Fluorescence intensity of PTAA when mixed with LL37

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

                                                                                                                             

L37FRRV can be explained by the change of 

the geometry adopted by the PTAA backbone. PTAA is 

conjugated system in which its backbone has a 

planar conformation, which was lost after addition of 

. The peptide LL37

PTAA, resulting in a change of the conformation 

geometry of polymer backbone (non

a blue shift of the PTAA absorption, and an increase of 

the fluorescence emission intensity by 200%.  It was 

reported that cleaved LL37

optical properties of PTAA. The sensor PTAA/ 

has been used to recognize different E. coli 

stains as presented in Figure 3.  In figures 3B, Black, E. 

coli BL21 was used as a negative control and did not 

show any change in the fluorescence in

The change of PTAA/LL37

perceived with the naked eye (Figure 3A).  Moreover, all 

E. coli strains cause a significant reduction in the 

fluorescence intensity of PTAA by cleaving the peptide 

. Using this method, 1 CFU/mL of E. coli has 

been rapidly detected in water.

Two electrochemical/Quartz Crystal Microbalance 

(QCM) sensors for the detection of E.coli bacteria based 

A) E. coli sensing using PTAA
Fluorescence intensity of PTAA when mixed with LL37

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

                                                                                                                             

can be explained by the change of 

the geometry adopted by the PTAA backbone. PTAA is 

conjugated system in which its backbone has a 

planar conformation, which was lost after addition of 

. The peptide LL37FRRV transmits its chirality 

PTAA, resulting in a change of the conformation 

geometry of polymer backbone (non-planar) and causing 

a blue shift of the PTAA absorption, and an increase of 

the fluorescence emission intensity by 200%.  It was 

reported that cleaved LL37FRRV has no effect 

optical properties of PTAA. The sensor PTAA/ 

has been used to recognize different E. coli 

stains as presented in Figure 3.  In figures 3B, Black, E. 

coli BL21 was used as a negative control and did not 

show any change in the fluorescence intensity of PTAA.

LL37FRRV solution color can

perceived with the naked eye (Figure 3A).  Moreover, all 

E. coli strains cause a significant reduction in the 

fluorescence intensity of PTAA by cleaving the peptide 

hod, 1 CFU/mL of E. coli has 

been rapidly detected in water. 

Two electrochemical/Quartz Crystal Microbalance 

(QCM) sensors for the detection of E.coli bacteria based 

A) E. coli sensing using PTAA-LL37FRRV
Fluorescence intensity of PTAA when mixed with LL37

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 2
                                                                                                                             

                                                                                                                             

can be explained by the change of 

the geometry adopted by the PTAA backbone. PTAA is 

conjugated system in which its backbone has a 

planar conformation, which was lost after addition of 

transmits its chirality 

PTAA, resulting in a change of the conformation 

planar) and causing 

a blue shift of the PTAA absorption, and an increase of 

the fluorescence emission intensity by 200%.  It was 

has no effect on the 

optical properties of PTAA. The sensor PTAA/ 

has been used to recognize different E. coli 

stains as presented in Figure 3.  In figures 3B, Black, E. 

coli BL21 was used as a negative control and did not 

tensity of PTAA.

solution color can 

perceived with the naked eye (Figure 3A).  Moreover, all 

E. coli strains cause a significant reduction in the 

fluorescence intensity of PTAA by cleaving the peptide 

hod, 1 CFU/mL of E. coli has 

Two electrochemical/Quartz Crystal Microbalance 

(QCM) sensors for the detection of E.coli bacteria based 

FRRV B). Fluorescence intensity of PTAA when mixed with LL37
Fluorescence intensity of PTAA when mixed with LL37FRRV with E. coli K12 or J96 wildtype strains. Reproduced with permission from [34].

2, Iss 1 
                                                                                                                                                   

                                                                                                                             

can be explained by the change of 

the geometry adopted by the PTAA backbone. PTAA is 

conjugated system in which its backbone has a 

planar conformation, which was lost after addition of 

transmits its chirality 

PTAA, resulting in a change of the conformation 

planar) and causing 

a blue shift of the PTAA absorption, and an increase of 

the fluorescence emission intensity by 200%.  It was 

on the 

optical properties of PTAA. The sensor PTAA/ 

has been used to recognize different E. coli 

stains as presented in Figure 3.  In figures 3B, Black, E. 

coli BL21 was used as a negative control and did not 

tensity of PTAA. 

 be 

perceived with the naked eye (Figure 3A).  Moreover, all 

E. coli strains cause a significant reduction in the 

fluorescence intensity of PTAA by cleaving the peptide 

hod, 1 CFU/mL of E. coli has 

Two electrochemical/Quartz Crystal Microbalance 

(QCM) sensors for the detection of E.coli bacteria based 

on quinone functionalized polythiophenes and 

carbohydrates are outlined in scheme 4 [35]. 

sensors have been developed using self

monolayers (SAM) on Au electrodes [36]. The bacteria 

were detected via two transducers pili

well as Concanavalin A (Con A) mediated 

lipopolysaccharides (LPS)

funct

(Au) electrode by electrochemical oxidation of the 

corresponding monomer quinone

cyclic voltammetry scans in acetonitrile. After ensuring 

stability of the film on the surface of the electrode

transducers thiol mannose (SM) was deposited on the 

sensing layer by cyclic voltammetry scans. Both 

SM/QT/Au (Scheme 3A) and Con A/LPS/SM/QT/Au 

(Scheme 3B) surfaces were characterized by cyclic 

voltammetry. The binding process and the efficiency of 

both sensors (SM/QT and Con A/LPS/SM/QT) toward 

the detection of E. coli bacteria have been examined by 

square wave voltammetry (SWV) and QCM. SWV is 

more sensitive than cyclic voltammetry for the 

characterization of the phenomena occurring at the 

biointerf

B). Fluorescence intensity of PTAA when mixed with LL37
with E. coli K12 or J96 wildtype strains. Reproduced with permission from [34].

 
 

 
                       

                                                                                                                                                                                                                               

on quinone functionalized polythiophenes and 

carbohydrates are outlined in scheme 4 [35]. 

sensors have been developed using self

monolayers (SAM) on Au electrodes [36]. The bacteria 

were detected via two transducers pili

well as Concanavalin A (Con A) mediated 

lipopolysaccharides (LPS)

functionalized polythiophene was deposited on gold 

(Au) electrode by electrochemical oxidation of the 

corresponding monomer quinone

cyclic voltammetry scans in acetonitrile. After ensuring 

stability of the film on the surface of the electrode

transducers thiol mannose (SM) was deposited on the 

sensing layer by cyclic voltammetry scans. Both 

SM/QT/Au (Scheme 3A) and Con A/LPS/SM/QT/Au 

(Scheme 3B) surfaces were characterized by cyclic 

voltammetry. The binding process and the efficiency of 

oth sensors (SM/QT and Con A/LPS/SM/QT) toward 

the detection of E. coli bacteria have been examined by 

square wave voltammetry (SWV) and QCM. SWV is 

more sensitive than cyclic voltammetry for the 

characterization of the phenomena occurring at the 

biointerfaces.  

B). Fluorescence intensity of PTAA when mixed with LL37
with E. coli K12 or J96 wildtype strains. Reproduced with permission from [34].

 
 

                                                                                                  

on quinone functionalized polythiophenes and 

carbohydrates are outlined in scheme 4 [35]. 

sensors have been developed using self

monolayers (SAM) on Au electrodes [36]. The bacteria 

were detected via two transducers pili

well as Concanavalin A (Con A) mediated 

lipopolysaccharides (LPS)

ionalized polythiophene was deposited on gold 

(Au) electrode by electrochemical oxidation of the 

corresponding monomer quinone

cyclic voltammetry scans in acetonitrile. After ensuring 

stability of the film on the surface of the electrode

transducers thiol mannose (SM) was deposited on the 

sensing layer by cyclic voltammetry scans. Both 

SM/QT/Au (Scheme 3A) and Con A/LPS/SM/QT/Au 

(Scheme 3B) surfaces were characterized by cyclic 

voltammetry. The binding process and the efficiency of 

oth sensors (SM/QT and Con A/LPS/SM/QT) toward 

the detection of E. coli bacteria have been examined by 

square wave voltammetry (SWV) and QCM. SWV is 

more sensitive than cyclic voltammetry for the 

characterization of the phenomena occurring at the 

 

B). Fluorescence intensity of PTAA when mixed with LL37FRRV 
with E. coli K12 or J96 wildtype strains. Reproduced with permission from [34].

 Review Article 
 

                                                                                                  

on quinone functionalized polythiophenes and 

carbohydrates are outlined in scheme 4 [35]. 

sensors have been developed using self

monolayers (SAM) on Au electrodes [36]. The bacteria 

were detected via two transducers pili-mannose (A) as 

well as Concanavalin A (Con A) mediated 

lipopolysaccharides (LPS)-mannose (B). Quinone 

ionalized polythiophene was deposited on gold 

(Au) electrode by electrochemical oxidation of the 

corresponding monomer quinone-thiophene (QT) via 

cyclic voltammetry scans in acetonitrile. After ensuring 

stability of the film on the surface of the electrode

transducers thiol mannose (SM) was deposited on the 

sensing layer by cyclic voltammetry scans. Both 

SM/QT/Au (Scheme 3A) and Con A/LPS/SM/QT/Au 

(Scheme 3B) surfaces were characterized by cyclic 

voltammetry. The binding process and the efficiency of 

oth sensors (SM/QT and Con A/LPS/SM/QT) toward 

the detection of E. coli bacteria have been examined by 

square wave voltammetry (SWV) and QCM. SWV is 

more sensitive than cyclic voltammetry for the 

characterization of the phenomena occurring at the 

 
FRRV with different E. coli strains C) 

with E. coli K12 or J96 wildtype strains. Reproduced with permission from [34].

Review Article  
  

                                                                                                  

on quinone functionalized polythiophenes and 

carbohydrates are outlined in scheme 4 [35]. Similar 

sensors have been developed using self-assembled 

monolayers (SAM) on Au electrodes [36]. The bacteria 

mannose (A) as 

well as Concanavalin A (Con A) mediated 

mannose (B). Quinone 

ionalized polythiophene was deposited on gold 

(Au) electrode by electrochemical oxidation of the 

thiophene (QT) via 

cyclic voltammetry scans in acetonitrile. After ensuring 

stability of the film on the surface of the electrode, the 

transducers thiol mannose (SM) was deposited on the 

sensing layer by cyclic voltammetry scans. Both 

SM/QT/Au (Scheme 3A) and Con A/LPS/SM/QT/Au 

(Scheme 3B) surfaces were characterized by cyclic 

voltammetry. The binding process and the efficiency of 

oth sensors (SM/QT and Con A/LPS/SM/QT) toward 

the detection of E. coli bacteria have been examined by 

square wave voltammetry (SWV) and QCM. SWV is 

more sensitive than cyclic voltammetry for the 

characterization of the phenomena occurring at the 

with different E. coli strains C) 
with E. coli K12 or J96 wildtype strains. Reproduced with permission from [34]. 

                                                                                                   

on quinone functionalized polythiophenes and 

Similar 

assembled 

monolayers (SAM) on Au electrodes [36]. The bacteria 

mannose (A) as 

well as Concanavalin A (Con A) mediated 

mannose (B). Quinone 

ionalized polythiophene was deposited on gold 

(Au) electrode by electrochemical oxidation of the 

thiophene (QT) via 

cyclic voltammetry scans in acetonitrile. After ensuring 

, the 

transducers thiol mannose (SM) was deposited on the 

sensing layer by cyclic voltammetry scans. Both 

SM/QT/Au (Scheme 3A) and Con A/LPS/SM/QT/Au 

(Scheme 3B) surfaces were characterized by cyclic 

voltammetry. The binding process and the efficiency of 

oth sensors (SM/QT and Con A/LPS/SM/QT) toward 

the detection of E. coli bacteria have been examined by 

square wave voltammetry (SWV) and QCM. SWV is 

more sensitive than cyclic voltammetry for the 

characterization of the phenomena occurring at the 



Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

 
Carruthers
 

 

Scheme 3
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measurements, which were performed with a single 
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Figure 4
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Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 
                                                                                                                             

 
Carruthers C                                                                                                                             
 

 

Scheme 3: (A) a direct E. coli detection using pili

 

Figure 4A describes the SWV of the SM/QT/Au sensor 

after incubation with different concentrations of E. coli. 

It is worth noting that current of the SM/QT/Au sensor 

decreases by increasing the concentration of E. coli. This 

behaviour can be explained by the formation of an E. 

coli layer at the biointerface hindering the electron 

transfer of the electroactive species quinone/thiophene in 

the SM/QT/Au. Similar behaviour has been obs

chiral electrodes for the detection of amino acids. The 

limit of detection was found to be 8.0 × 10

Figure 4B exhibits the electrochemical QCM (EQCM) 

measurements, which were performed with a single 

QCM electrode. The limit of detection

1.7 × 104 cells/mL, which is higher than the one found 

by SWV detection.  Similar trends have been observed 

for Con A/LPS/SM/QT/Au sensor for the detection E. 

coli (Figure 5).  The limits of detection were found to be 

25 cells/mL and 50 ce

techniques, respectively. E. coli strongly binds to the 

Con A/LPS/SM/QT/Au sensor.
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Figure 4. (A) SWV responses of an SM/TQ modified gold electrode after incubation with 
vs time curve when SM/TQ was exposed to different concentrations of  E. coli. Reproduced with permission from [35].
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CONCLUSIONS 

Polythiophene-based sensors have demonstrated their 

utility for the detection of pathogens such as E. coli and 

Salmonella. The ability to modify their optical and 

electrochemical properties enables tuning for bacteria 

detection. Additionally, the antimicrobial properties of 

polythiophenes offer significant opportunities for the 

development of rapid, cost-effective portable devices for 

the detection of these harmful pathogens.  

 

Optical detection of pathogens may have some 

drawbacks such as biomolecule interferences, which 

limit their application in sensing. On the other hand, 

doped polythiophene combined with the appropriate 

electrochemical detection method can be advantageous 

for sensor design. Polythiophenes also have outstanding 

adhesion properties on platinum electrodes allowing the 

sensing layer to carry unambiguous transducers for the 

detection of pathogens in food, to avoid diseases. 
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