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INTRODUCTION 

Acetone is the important volatile organic 
compound (VOC), that have high vapor pressure in 
ambient conditions. Acetone is present in the 
organism of a people and exhaled by him breath. 
Acetone can affect human body and can damage 
the nervous system by acute poisoning [1,2]. In low 
value of gas concentration, the damage of acetone 
is not so much high, but at higher concentration it 
can lead to coma or even death. Inhalation of 
acetone can cause headaches, allergies, fatigue, and 
even narcosis, and can be harmful to the nervous 
system. The use of exhaled acetone gas from 
humans to diagnose (identification) of diabetes and 
monitoring health conditions as well as treatment 
of diabetic patients are very important. Such type 
of the identification of diabetes has great promise 
as it is non-invasive. Acetone can be used for a fast, 
risk-free and inexpensive diagnosis of diabetes. 
The concentration of acetone in healthy 
individuals’ breath varies from 0.3 to 0.9 ppm and 
in the exhaled air of diabetic patients exceeds 1.8 
ppm. Note that a resistive type sensor using tin 
dioxide SnO2 is considered as an exhalation gas 
sensor  

because of its excellent reactivity with VOCs, non-
difficult fabrication processes, and the possibility 
of its miniaturization. 

Note that possibilities to the use of semiconducting 
metal oxide sensors for detection of different gases 
are in the focus of attention of many  researchers 
[3-5]. Note that a sensitivity, that is, a change of 
measured signal (voltage, current, etc.) per the 
analyte unit; selectively to a single analyte; the 
ability of a sensor to provide reproducible results in 
time (stability), response and recovery times, 
operation (working) temperature (pre-heating 
temperature of a substrate) are main parameters of 
all types of chemical sensors. The widely used gas-
sensing metal oxide materials, such as SnO2, ZnO, 
TiO2, In2O3, Ga2O3 and Fe2O3, are very promising. 
The pure SnO2 and other metal oxide thin film 
without any catalyst exhibits a poor sensitivity to 
gases and need in pre-heating of its at rather high 
temperature (up to 350-400 0C). Therefore, rather 
large consuming electric power for the detection of 
a gas is necessary.  
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ABSTRACT  

Results of investigations of metal oxide chemical sensors for detection of acetone made of tin dioxide were discussed in 

this review paper. There are several possibilities and technologies to manufacture of such sensors. Pure (without 

impurities) SnO2 and other metal oxide have low sensitivity to gases at its rather high pre-heating (operation) temperature. 

Doping of tin dioxide with some metals or carbon nanotubes is one way of improving the sensitivity of such metal oxide 

sensors. Another way is the preparation of nano-sensors. 
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Different versions of acetone tin dioxide sensors will 

be discussed below. Doping is one way of improving 

the sensitivity of a metal oxide sensors. Their 

sensitivity can be greatly improved by doping of the 

volume during a sensitizing of a material or 

dispersing on the oxide surface a low concentration 

of Co, Au, Pd, Pt, etc. For example, compared with 

sensors loaded with pure SnO2 nanofibers, the Co-

SnO2 nanofiber sensors exhibited improved acetone 

sensing properties with high selectivity and rapid 

response and recovery times. Pure SnO2 nanofiber-

based flat sensors have similar responses to acetone 

and ethanol. The Co-doped SnO2 nanofiber-based flat 

sensors had more than five times larger response 

(sensitivity) than that of the sensors to ethanol. These 

results suggest that the addition of Co is beneficial to 

the selective acetone sensing properties of SnO2 

nanofibers [6]. 

It was found also that the controlling particle size and 

porosity of the material can enhance the sensitivity of 

the material. Metal oxides with small grains, 

nanorods, nanotubes, nanowires and so on can lead to 

higher sensitivity of sensors made from them. 

Average grain size was reduced to several 

nanometers [7]. Tin oxide powders show higher 

sensor performance than corresponding metal oxide 

powder materials, which have lower specific surface 

area. Microstructure plays a crucial role, and a 

sensor’s sensitivity can be significantly increased by 

using materials with very small grain sizes [7]. Note 

that nanosensors made from metal oxides doped with 

carbon nanotubes (CNTs) have higher sensitivity and 

better stability of the sensor [8].  

Properties of semiconducting tin dioxide acetone 

sensors are reported below. At first, we will report 

results of investigations of sensors made of doped tin 

dioxide, then sensors with lower dimension. After 

that tin dioxide sensors activated with carbon 

nanotubes (CNTs) are considered. 

DOPED SNO2 SENSOR FOR DETECTION OF 

ACETONE 

Acetone sensors made from SnO2 doped with 

different impurities. A series of Co3O4-loaded tin 

dioxide nanocomposite thick films were prepared by 

grinding, screen-printing and sintering in [9]. The 

composite films exhibited good response to acetone 

at pre-heating temperature of the substrate 300◦C. At 

this temperature, the maximum sensor response to 

acetone (1000 ppm in air) was 235, which was about 

5 times as large as that of the pure SnO2. The 

selectivity to acetone over H2 and CO was also 

promoted by the addition of Co3O4 to SnO2. Though 

Co3O4 is a p-type conductor and SnO2 is a typical n-

type conductor, the small mole rate of Co3O4 does not 

change it to a p-type. Measurements show n-type 

response to reducing gases (the electrical resistance 

decreases on exposure to reducing gas) in air. The gas 

sensitivity exhibits a volcano-shaped relation with the 

operating temperature, reaching a maximum at 300◦C 

in each case. The addition of Co3O4 does not result in 

a shift of the volcano-shaped correlations between 

gas response and temperature toward the lower 

temperature side. This is different from Ag2O- and 

PdO-loaded SnO2 sensors which make the best 

operating temperature shift toward the lower 

temperature side [10,11].  

Acetone vapor sensing characteristics of cobalt-

doped SnO2 thin films were reported in [12]. 

Structural and micro structural studies of PbO-doped 

SnO2 sensor for detection of methanol, propanol and 

acetone were carried out in [13]. The thick films of 

undoped, zinc, ceria and zinc with ceria doped SnO2 

nanopowders were tested in [14] for gas sensing 

characteristics at various temperatures and 

concentrations of LPG, ethanol, ammonia and 

acetone vapour. The response, selectivity, optimum 

operating temperature, response time and recovery 

time were investigated for zinc, ceria, zinc with ceria 
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doped and undoped SnO2. Gas sensors based on 

samarium oxide loaded mulberry shaped tin oxide for 

highly selective and sub ppm-level acetone detection 

were investigated in [15]. 

 

SENSORS WITH LOWER DIMENSION 

We discuss in [7] dimensional effects in small-size 

nanosensors. They are very important for modern 

micro- and nanoelectronics. Today the following 

small-size nanosensors are known: zero dimensional 

(0D); one dimensional (1D) nanorods and nanowires 

(NWs); two dimensional (2D) nanosheets and films; 

three dimensional (3D) porous nanostructures; three 

dimensional (3D) nanostructures functionalized 

(decorated) with nanotubes. It is known that electrons 

in 1D nanomaterials are confined in the 2D, but can 

delocalize along the long axis. For 2D nanomaterials, 

electrons conduct across the thickness but are 

delocalized in the plane of the nanomaterial. 

Regardless of the dimension of the nanomaterial, the 

surface of the nanomaterial is homogenous in an 

electron depleted region within the nanomaterial at a 

distance known as the Debye length. For example, 

when a volatile organic compound introduced to a 

sample, the neutralization of oxygen species and 

subsequent release of trapped electrons causes a large 

change in the value of the resistance. This mechanism 

is well understood for gas sensors made from many 

nanomaterials. Introducing different dopants to 

improve response and recovery kinetics allows 

preparing the device greater selectivity toward a 

define gas. Researchers have possibilities to produce 

nanorods, nanowires, nanofilms, and nanosheets with 

nanoparticles as well as form nanoscale multiple p• n 

heterojunctions between the two nanomaterials at its 

interface. We will focused on reporting here new 

information about nanosensors made of various SnO2 

based gas sensor with different morphology such as 

nanobelt [16-19], multishelled hollow microspheres 

[20], flower-like structures [21-23] and etc. To 

improve sensitivity and selectivity towards acetone 

and also reduce their operating temperature of SnO2 

based chemiresistor, as usually, noble metals such as 

Au [24], Pt [25], Ag [26], as well as reduced 

graphene oxide [27-29] have been doped to the SnO2 

substrate.  

Li et al. [17] synthesizes 3D Au-sensitized SnO2 

hollow microspheres via hydrothermal method. The 

catalytic effect of Au and the enhanced electron 

depletion at the surface of SnO2 hollow microspheres 

were responsible for improvement in acetone-

sensing. Templating route using polystyrene (PS) 

colloid and bioinspired protein (apoferritin) was 

suggested for producing both meso/macro pores and 

catalyst loaded thin-walled SnO2 nanotubes (NTs) by 

Jang et al. [25-29].  

Co-SnO2 composite nanofibers were synthesized in 

[6] by an electrospinning. Gas sensors were 

fabricated by spinning these nanofibers onto flat 

ceramic substrates, which had signal electrodes and 

heaters on their top and bottom surfaces, respectively. 

The response was 33 when the sensors were exposed 

to acetone at 330°C. The response and recovery times 

to acetone were about 5 and 8 s, respectively.  

A heterostructure acetone sensor based on NiO-doped 

SnO2 hollow NFs with porous structures through the 

combination of electrospinning technique and 

calcination procedure were developed [30]. The 

excellent sensing performances of the proposed 

sensor were ascribed to its hollow-core structure and 

Ni doping. In fact, the presence of hetero junctions 

which formed by the combination of p-type NiO and 

n-type SnO2 increased the sensor resistance and 

sensory responses to acetone vapor. The enhanced 

acetone sensing can be ascribed to the formation of p-

n junction between p-type NiO and n-type SnO2 

grains. The gas sensor based on NiO-SnO2 nanofibers 

has a maximum gas response at the operating 

temperature of 275∘C, while the sensor based on NiO 

shows highest responses at 325∘C. NiO-SnO2 exhibits 

a better selectivity than NiO, having a preferential 

response to acetone. Therefore, the NiO-SnO2 

nanofibers could be used for selective acetone 

detection. Furthermore, the long-time stability of NiO 
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and NiO

exhibit good stability towards 20 ppm acetone in 60 

days [31]. 

Highly sensitive acetone sensor based on Eu

SnO2 electrospun nano

Work temperature is 280oC for such sensors. Y

doped SnO

The nanocrystalline SnO

[32] by a co

nanoparticles were 5.7 to 14.3 nm. Thick

made from these nanoparticles. Its response 

characteristics as a function of the operating 

temperature in the range 140

acetone vapor in air is shown in Figure 1. 

Figure 1

function of the operating temperature.
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be explained from the kinetics and mechanics of gas 
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The quantity of th

on the surface gradually increases with an increase in 

the operating temperature until the rate of desorption 

becomes equal to that of adsorption. The maximum 

amount of chemisorption is reached at the 
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temperature is further increased above this 

temperature, the balance will move to desorption, as 

the chemisorption is an exothermic reaction. Then, 

the amount of adsorbed gas is reduced, resulting in a 

decreased gas response. T
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exhibit good stability towards 20 ppm acetone in 60 
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SnO2 electrospun nanofibers are reported in [31]. 

Work temperature is 280oC for such sensors. Y

osensors were developed in [32,

The nanocrystalline SnO2 powders were prepared in 

precipitation method. Diameters of SnO

anoparticles were 5.7 to 14.3 nm. Thick

made from these nanoparticles. Its response 

characteristics as a function of the operating 

temperature in the range 140-260°C at 0.5 ppm of 

acetone vapor in air is shown in Figure 1. 
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function of the operating temperature. 

can be used as a sensing material for the 

detection of acetone at low concentrations. The 

responses of all SnO2 samples initially increase and 

attain the highest value and then decline with the 

increase in operating temperature. This behavior can 

be explained from the kinetics and mechanics of gas 
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e chemically adsorbed gas species 
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the operating temperature until the rate of desorption 
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amount of chemisorption is reached at the 

temperature with the highest gas response. If the 

temperature is further increased above this 

temperature, the balance will move to desorption, as 

the chemisorption is an exothermic reaction. Then, 
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may be ascribed to the smaller particle size of the 
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sensors annealed at 600
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sensing investigations of SnO
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different concentrations of acetone in relation to the 

operating temperature is shown in 

annealing temperature. We can see that the response 

increases continuously with an increase in the 

acetone concentration. This is attributable

increased surface coverage of the acetone molecules 

on the membrane at higher concentrations, which 

promotes a subsequent reaction between acetone and 

atmospheric oxygen on the membrane surface, 

leading to a rapid chemical reaction and thus 

increasing the response. At the optimal operating 

temperature (TO) of 180

sensor was 3.333, 3.936, 5.043, and 7.274 for 1, 3, 5, 

and 10 ppm acetone gas, respectively. 
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Figure 5: Response to 1000 ppm methanol and ethanol vapors at 

the operating temperature 200oC. 

CNTs functionalization as well as thick films surface 

modification with Ru catalyst were focused in [39] on 

obtaining the sensitivity to such target gases as 

ethanol, methanol, acetone and toluene. Results of 

measurements and samples codes with corresponding 

synthesis methods are summarized in Table 1. 

Sample 
code 

Process 
parameters Rair/Rmeth Rair/Reth 

KCS1-3 Hydrothermal 
synthesis, 1:4 22 14 

KCS2-2 Hydrothermal 
synthesis, 1:8 1500 500 

EKCS3-2 Hybrid method, 
1:24 1000 750 

ECS7-2 Sol-gel, 1:50 1000 2000 

ZCS-66 Hydrothermal 
synthesis, 1:66 700 600 

ZCS-200 Hydrothermal 
synthesis, 1:200 384 400 

 

Table 1: The response of studied MWCNT/SnO2 samples to 1000 ppm of different gases at the operating temperature 200oC. 

 

The testing of all samples at different operating 

temperatures in other to compare responses to various 

considered here target VOCs was carried out. Results 

of these investigations fulfilled for set of ECS7-2 

series samples summarized in Figure 6. The relatively 

high 1000 ppm concentration was chosen.  

The selectivity relative to other VOC and high 

response values are registered at methanol and 

ethanol vapors exposure at the operating temperature 

200oC. Unfortunately, separate detection of methanol 

and ethanol vapors is not come in as yet. The 

selectivity at the operating temperature 250oC is 

absent though at that relatively we were carried out 

the testing of all samples at different operating 

temperatures in other to compare responses to various 

considered here target VOCs. Results of these  

 

investigations fulfilled for set of the ECS7-2 series 

samples summarized in Figure 6. As for the EKCS3-

2 set of samples made by applying of the hybrid 

technology, it should be noted that the high response 

to acetone and toluene vapors of these sensors 

appears at 200oC but selectivity at that is poor. The 

selective response to toluene vapors is observed at 

150oC (Figure 7). Thus, the KCS1-3 and EKCS3-2 

series samples functioned at relatively low operating 

temperature (150oC) could be use as toluene and 

acetone vapors sensors, respectively.  

Sufficiently selective response to acetone vapors is 

registered by ZCS1-200 set of samples at all 

operating temperatures in the range of 150-300oC. 

Results of the test measurements are shown in Figure 

8.  
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work temperature

 

Results of measurements of the sensitivity of all 

studied samples at different work temperature are 

collected in Table 2.

The largest and sufficiently selective response to 

acetone vapors (Ra/Rg = 1002) at their concentration 

1000 ppm is achieved at samp

ratio of the components. The largest response to 

acetone vapors (Ra/Rg=555,62) is fixed for the 

ZCS1

components to acetone vapors exposure 1000 ppm at 

250oC operating temperature. Selectiv

acetone vapors sensors with 1:50 mass ratio of the 

components appears only at the 300

temperature. As an example, the dependence of the 

ZCS1200 sensor response vs acetone vapor 

concentration at 150

Note that the gas response increases linearly with
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Figure 6: Comparison of ECS7

ppm different VOC exposure vs operating temperature.

Figure 7: Response of EKCS3

acetone and toluene vapors vs operating temperature.

Figure 8: Measurements of the response (sensitivity) at different 

work temperature. 

Results of measurements of the sensitivity of all 

studied samples at different work temperature are 

collected in Table 2.

The largest and sufficiently selective response to 

acetone vapors (Ra/Rg = 1002) at their concentration 

1000 ppm is achieved at samp

ratio of the components. The largest response to 

acetone vapors (Ra/Rg=555,62) is fixed for the 

ZCS1-200 set of samples with 1:200 mass ratio of the 

components to acetone vapors exposure 1000 ppm at 

C operating temperature. Selectiv

acetone vapors sensors with 1:50 mass ratio of the 

components appears only at the 300

temperature. As an example, the dependence of the 

ZCS1200 sensor response vs acetone vapor 

concentration at 150

Note that the gas response increases linearly with
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Response of EKCS3-2 set of samples to 500 ppm 

acetone and toluene vapors vs operating temperature.

Measurements of the response (sensitivity) at different 

Results of measurements of the sensitivity of all 

studied samples at different work temperature are 

collected in Table 2. 

The largest and sufficiently selective response to 

acetone vapors (Ra/Rg = 1002) at their concentration 

1000 ppm is achieved at samp
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components to acetone vapors exposure 1000 ppm at 

C operating temperature. Selectiv
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components appears only at the 300
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acetone and toluene vapors vs operating temperature. 

Measurements of the response (sensitivity) at different 

Results of measurements of the sensitivity of all 

studied samples at different work temperature are 

The largest and sufficiently selective response to 

acetone vapors (Ra/Rg = 1002) at their concentration 

1000 ppm is achieved at samples with 1:200 mass 
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C operating temperature. Selective sensitivity of 

acetone vapors sensors with 1:50 mass ratio of the 
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temperature. As an example, the dependence of the 

ZCS1200 sensor response vs acetone vapor 
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Figure 9:  Dependence of the EKCS3

acetone vapor concentration.
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Table 2: Acetone and toluene vapors responses of all studied samples vs operating temperature.

oxide sensitive layer lead to the

performance of the

temperature [40,41]. Apparently, the discussed 

possible mechanisms require further experimental 

and theoretical investigations.

The weight ratio of MWCNT 

[42] from 0.0-0.75% to synthesize powder with
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