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ABSTRACT 

In recent years, fluorescent imaging (FI) has emerged as a major area of interest within the field of medical imaging. FI 

plays a critical role in molecular imaging.  There is evidence suggesting its utility in providing a detailed view of 

biological and cellular processes at a molecular level. This study aimed to assess the biocompatibility and cellular 

uptake of conjugated gold-cockle shell derived calcium carbonate nanoparticles (Au-CsCaCO3NPs) for fluorescent 

imaging. Researchers have shown a keen interest in the development of targeted multifunctional agents in oncology and 

near infrared (NIR) fluorescence imaging. This is expected to have significant impact on medical imaging due to the 

low tissue auto fluorescence and high cellular penetration within the NIR spectrum window. Imaging agents are known 

to be associated with risks such as non-biodegradability and high toxicity. The synthesized Au-CsCaCO3NPs were 

characterized for size and morphology, zeta potential and absorbance in the UV-Vis spectrum. Biocompatibility of Au-

CsCaCO3NPs in cultured human breast carcinoma cells (MCF-7) and mouse embryonic fibroblast cells (NIH-3T3) was 

evaluated using lactate dehydrogenase (LDH) and reactive oxygen species (ROS) bioassays for toxicity analysis. 

Cellular morphology and uptake was examined by fluorescence and confocal microscopy. Cells were able to take up 

nanoparticles within their cellular compartments. Further, increased cell death was observed in Au-CsCaCO3NPs-treated 

MCF-7 cells relative to Au-CsCaCO3NPs-treated NIH-3T3 cells. The Au-CsCaCO3NPs were biocompatible, 

environmentally friendly and easily synthesized. These results suggest Au-CsCaCO3NPs may have significant cellular 

imagin utility 
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INTRODUCTION 

In recent years, nanoparticles ranging in size from 10-

100 nm, [1] have shown great promise in biomedical 

imaging, regenerative medicine, scaffold studies, drug 

delivery, therapeutics, and tissue engineering [2-9]. In 

particular, the last decade has seen a growing trend 

towards using nanoparticles for imaging [10, 11], with 

considerable literature focused on biogenic nanoparticles 

such as aragonite calcium carbonate nanoparticles [12] 

and gold nanoparticles (AuNPs) [13]. Aragonite is one 

of the polymorphs of calcium carbonate that naturally 

and richly exists (95 - 98 %) in cockle shell (Anadara 

granosa), a mollusc found in Malaysia [14]. The effects 

of using calcium carbonate nanoparticles for imaging 

has been described with the Eu3+-doped calcium 

carbonate cubic nanoparticles produced by carbonation 

synthetic route, and the photoluminescence properties 

characterised by scanning electron microscope and x-ray 

diffractometer [15-17]. In other related studies, it was 

demonstrated in the technique used for the development 

of fabricated oxygen sensitive polymer nano capsules by 

means of  layer by layer (LBL) tactic using vaterite 

calcium carbonate nanoparticles as templates. 

Additionally, arguing that the buffer used played a 

decisive role in maintaining their integrity and that the 

nanoparticles were utmost stable in alkaline sodium 

hydrogen carbonate [18]. A more current study by 

Savelyeva and co-workers for biomedical use involved 

the formation of porous vaterite calcium carbonate 

coverings on whole surface and interior of electrospun 

poly (ε-caprolactone) (PCL) fiber surfaces by using 

ultrasound [19]. The method described that the 

difference in experimental settings such as reagent 

concentration, treatment and time, allow for control of 

the calcium carbonate of vaterite or calcite polymorph 

and has proven successful on PCL - CaCO3 (calcium 

carbonate) scaffolds [20-22]. Similarly, a recent 

comprehensive study of chitosan calcium carbonate 

nanoparticles modified with diacid, centered on L- 

phenyl aniline (2 - 8 wt %) using different mass ratios 

formed by ultrasound agitation [23]. In addition, also 

found that the nanoparticles revealed thermal stability 

and a notable adsorption capacity due to presence of  

active spots like the amino and carbonyl groups [24-26]. 

In regards to the AuNPs, there is a relatively small body 

of literature that is concerned with the development of 

AuNPs bioconjugates and their potential use in imaging 

or other biomedical applications [27, 28]. Also, due to 

their low or non-significant toxicity are increasingly 

being used in diagnosis, therapeutics, disease treatment, 

and targeted drug delivery systems [28-33].  In addition, 

AuNPs bioconjugates maintain high stability upon 

interaction with biomolecules such as proteins and 

antibodies [34,35].  Major attention being on the AuNPs 

surface plasmon resonance property, which pays 

particular focus to designing diagnostic biomaterials, 

drug targeting agents, therapeutics, and contrast agents 

[36-42]. Furthermore, existing works on AuNPs and 

their conjugates has extensively been employed in 

agriculture to enhance visual detection of pesticides, 

food industry to detect contaminants, and extension of 
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food shelf life [43, 44]. However, recent developments 

in biomedical imaging reason that there is existence of 

limitations concerned with the current imaging probes 

meant for clinical usage. These include non-

biodegradability or slow excretion and high toxicity 

challenging the production of a strong imaging signal 

compromising their further evolution into clinical use 

[10]. In addition, research investigations suggest that 

there are also a number challenges associated with 

targeted tumor nanoparticles administered by 

intravenous route due to interaction with an intricate 

atmosphere [45]. 

These include clearance of targeted nanoparticles by the 

phagocytes; either by effectively removing nanoparticles 

from circulation leaving a trivial portion at the tumor 

sites or by long retention of the nanoparticles potentially 

developing into complications like toxicity [46]. 

Secondly, tumor physiological properties like antigen 

expression and tumor permeability that stop the buildup 

of the nanoparticles or drug delivery in the region [47-

49]. It has also been elaborated in a prior study that 

nanoparticles in blood circulation, habitually bind to 

plasma proteins (opsonization) that are phagocyted 

within the blood, spleen, bone marrow and liver [50]. 

Similar studies have shown techniques that alleviate 

these limitations, by embracing the stabilization of 

particle dispersions using coatings, understanding the 

outcome of the nanoparticles in the blood stream and 

their physiochemical properties thus, a substantial need 

to produce biocompatible nanoparticles with ideal 

features [51-54]. Herewith, gold near infrared 

conjugated cockle shell-derived calcium carbonate 

nanoparticles (Au-CsCaCO3NPs) are prepared and 

assessed for in vitro biocompatibility using assays such 

as lactate dehydrogenase and reactive oxygen species. 

Cellular uptake of the Au-CsCaCO3NPs, evaluated 

using fluorescent and confocal imaging. Primarily, the 

Au-CsCaCO3NPs development is prompted by the need 

for cost efficient and biocompatible nanomaterial for 

imaging. The preparation utilizes method friendly 

approaches such as, the classic Turkevich method [55] 

and dodecyl dimethyl betaine (BS - 12). The Au-

CsCaCO3NPs potential use for fluorescent imaging is 

also elaborately discussed. 

MATERIALS AND METHODS 

Materials and chemicals 

The gold colloid solution was purchased from prima 

nexus Sdn Bhd (Malaysia). Indocyanine green dye 

(ICG) was purchased from Sigma-Aldrich (Steinheim, 

Germany). DAPI (4', 6-diamidino-2-phenylindole), 

Prolong gold antifade reagent, acridine orange (AO) and 

propidium iodide (PI) from Sigma-Aldrich (USA). 

Dulbecco's modified Eagle's medium (DMEM), trypsin, 

fetal bovine serum (FBS), antibiotics combination 

(glutamine 100 mmol/L, penicillin 100 U/mL and 

streptomycin 100 µg/mL), and phosphate-buffered saline 

(PBS) were purchased from Naclai Tesque, Inc., Kyoto, 

Japan. Lactate Dehydrogenase (LDH) Assay and 

Reactive Oxygen Species (ROS) Assay were purchased 

from Cell Biolabs, Inc., San Diego CA, USA. Breast 

cancer cell line (JCRB: MCF-7) and the fibroblast cell 

line (JCRB: NIH-3T3) were commercially purchased 

from the Japanese Collection Research Bioresource 



Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 1, Iss 1 Research Article  
                                                                                                                                                     

 
Karimah KH                                                                                                                                                                                                                                 
 

(JCRB). All chemicals used were of analytical grade 

unless mentioned otherwise in the experiments. 

 

Incorporation of NIR dye and Synthesis of 

Conjugated Gold-Cockle Shell-Derived Calcium 

Carbonate Nanoparticles (Au-CsCaCO3NPs)  

The synthesis of cockle shell derived calcium carbonate 

nanoparticles was performed as described by Islam and 

colleagues (2013) [56]. Gold nanoparticle synthesis was 

performed using the method described by Verma and 

colleagues (2014) [57]. Approximately0.2 g cockle shell 

derived calcium carbonate nanoparticles was mixed in 

20 ml gold nanoparticle solution,  by the method of Cai 

and colleagues (2006) [58]. Approximately 5 mg 

indocyanine green (ICG) was added to the mixture.  The 

solution was sonicated for 20 minutes and incubated for 

3 days on magnetic stirrer at 200 rpm. The mixture was 

further ultra-centrifuged for 10 minutes at 10,000 rpm 

resulting in a light-green-purplish, (Au-CsCaCO3NP) 

nano-composite. The supernatant was decanted and 

pellet washed multiple times with deionised water. The 

prepared nano-composite was dried in the oven for 4 

days and stored in oven for later use. 

Characterisation of Au-CsCaCO3NPs  

Transmission Electron Microscope (TEM): The 

nanoparticle size and morphology was analysed using 

transmission electron microscope (TEM). The nano 

conjugate was dispersed in absolute alcohol and 

sonicated for 40 minutes. About 5 µl of the suspended 

sample solution was pipetted out on to copper grip 

specimen mount. The sample was viewed under TEM 

(Hitachi H-7100). 

Zeta Potential and Measurement Size Distribution: 

The analysis for the synthesized nano conjugate was 

done using zetasizer Nano ZS (Malvern Panalytical). 

The nano conjugate was suspended in deionised water 

and sonicated for 1 hour. The homogenous suspension 

was then deposited into the zeta cuvette and examined 

for zeta potential and size distribution by intensity. 

UV-VIS Spectrophotometer: The presence of different 

analytes of the nano conjugate were monitored using 

UV-Vis spectrophotometer (UV-2600) at wavelengths 

ranging from 300 - 800 nm.  

In vitro Cell Culture and Biocompatibility Studies: 

Human breast carcinoma cells (JCRB: MCF-7) and 

normal mouse embryonic fibroblast cells (JCRB: NIH-

3T3) from receipt (P0) were cultured to post-receipt 

passage 5 (P5) in DMEM (high glucose) supplemented 

with 10% FBS and antibiotics combination. The cultured 

flasks (Eppendorf culture T-25 and T-75) were then 

placed in an incubator with 5% carbon dioxide at 37˚C 

(Thermo Fisher Scientific LPG, Hudson, New 

Hampshire, USA) until the flasks reached 80% - 90% 

cell confluence, at which time, the cultured cells were 

further used for seeding and treatment. 

2.4.1 Cells Seeding and Treatment: Cultured cells 

were detached using trypsin and seeded into 96-well 

plates at a density of 1×105 cells per well. The 96-well 

plates were then placed into the 5% carbon dioxide 

incubator at 37˚C for 24 hours. The medium was 

removed and the cells were treated and co-cultured in 
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replicates with Au-CsCaCO3NPs suspension 

(concentration of 1 mg/ml in 10% serum free DMEM 

media) for a period of 24 hours, 48 hours, and 72 hours. 

After exposure, the medium in the wells was aspirated 

and monolayers were washed with PBS.  Medium was 

replaced for cell use in the LDH assay and ROS assay. 

Lactate Dehydrogenase Assay (LDH): Published LDH 

studies were identified using a search strategy developed 

by Allen and colleagues (1994) [59]. MCF-7 cells and 

NIH-3T3 cells in 96-well plates were incubated for 72 

hours after treatment with 0, 50, or 100 µg nanoparticle 

solutions. The 96-well plates were cleared of all 

previous media and cell membrane integrity assessed 

using the protocol adapted by Smith and colleagues 

(2011) [60]. The protocol measures the amount of LDH 

released by the lysed cells as a measurement of cell 

damage. 

Lactate Dehydrogenase Treatment Protocol: The 96 - 

well plates were removed from the incubator with 

previous treatment. Sterile water and Triton X-100 

provided were added to each well in triplicate for the 

pre-seeded and treated plates as shown in table 1 below. 

Reagent Experimental 
Sample 

Negative 
Control 

Positive 
Control 

Sterile 

Water 

15 µl 15 µl nil 

Triton X-

100 

nil nil 15 µl 

Table 1: Lactate Dehydrogenase Treatment Protocol. 

The plates were incubated for 10 minutes at room 

temperature. Approximately, 90 µl of media was 

carefully transferred from each well to clean 96-well 

plates suitable for microplate reader. Around 10 µl of 

LDH assay reagent was added to the wells and allowed 

to incubate for 1 hour. After incubation, the plates were 

placed on a shaker for 10 minutes and optical density of 

the solution was measured with a microplate reader at 

450 nm.  The values were recorded and a graph plotted 

with Excel. 

Reactive Oxygen Species Assay (ROS) 

Reactive Oxygen Species Treatment Protocol 

Preparation of Reagents: 1X DCF-DA (20X DCF-DA 

stock solution diluted to 1x in serum free DMEM media 

and mixed uniformly using sonicator vortex). Hydrogen 

peroxide (H2O2) dilutions were prepared in serum-free 

DMEM. 

Preparation of Standard Curve: Ten-fold serial 

dilutions of DCF standards were prepared in a 

concentration range to 10 µM by diluting the 1 mM DCF 

stock in serum-free DMEM shown in Table 2.  A 0 µM 

control was also prepared without DCF. 

 

Standard 
Tubes (T) 

DCF 
Standards 
(µl) 

DMEM 
Serum Free 
Media (µl) 

DCF 
(nM) 

1 10 990 10000 
2 100 of T1 900 1000 
3 100 of T2 900 100 
4 100 of T3 900 10 
5 100 of T4 900 1 
6 100 of T5 900 0.1 
7 100 of T6 900 0.01 
8 0 1000 0 

Table 2: Preparation of Standard Curve. 

Preparation of DCF Standards: 75 µl of each DCF 

standard was transferred to a 96-well plate followed by 
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75 µl of the 2X cell lysis buffer. Fluorescence was 

measured at 480 nm excitation and 530 nm emissions. 

Assay Protocol 

DCF Dye loading: The 96-well plates were cleared of 

all previous media and washed twice with PBS. 100 µl 

of 1X DCF-DA prepared solution was added to the cells 

and incubated for 45 - 60 minutes at 37°C. The 96-well 

plates were cleared of all solutions and washed twice 

with PBS. The DCF-DA loaded cells were treated with 

the prepared hydrogen peroxide in 100 µl media. 

Quantitation of Fluorescence: After treatment with the 

oxidant, media was removed from the 96-well plates and 

plated were washed twice well with PBS. 100 µl of 

media and 100 µl of 2X cell lysis buffer was added to 

each well, mixed thoroughly, then incubated for 10 

minutes. 150 µl of the mixture was then transferred into 

a clean 96-well plate for fluorescent measurement. The 

fluorescence was recorded at 480 nm excitation and 530 

nm emission.  The experiment was conducted in 

triplicate.  

In vitro Confocal Imaging and Cellular Uptake of the 
Gold Near Infrared Conjugated Cockle Shell-derived 
Calcium Carbonate Nanoparticles (Au-
CsCaCO3NPs) 

Breast cancer cells, MCF-7, were seeded into 6-well 

plates in DMEM. Upon reaching 80% cell confluence, 

the medium was removed then replaced with 1ml of 

fresh culture medium supplemented with 25 mM HEPES 

containing Au-CsCaCO3NPs suspension and incubated 

at 37˚C for 6 hours. The cells were washed in PBS three 

times before analysis by fluorescent and confocal 

microscopy. Fluorescent emission was visualized using a 

fluorescent microscope and images were recorded for 

quantification of conjugate nanomaterial uptake by the 

cells (Immunofluorescence Microscopy System, Tokyo, 

Japan). 

Fluorescent Preparation Protocol: The cells were 

seeded onto 4-well chambered sterile slide (SPL life sci, 

made in Korea) and incubated for 24 hours overnight. 

The medium was removed and the cells were treated in 

replicates with Au-CsCaCO3NPs suspension for a period 

of 72 hours. After exposure, the medium in the wells 

were aspirated and washed with PBS twice. The cells 

were re-suspended after trypsinization and 0.5 ml of 

Devil’s stain [1:1 ratio of AO and PI] was added to each 

well for 60 minutes at room temperature. Afterwards, a 

drop was taken and mounted on clean slide with 

coverslip. The slides were examined using fluorescence 

microscopy (Immunofluorescence microscopy system, 

Tokyo, Japan). 

Confocal Preparation Protocol: The cells were seeded 

onto 4-well chambered sterile slides (SPL life sci, made 

in Korea) and incubated for 24 hours. The medium in the 

wells was removed and the cells were treated in 

replicates with Au-CsCaCO3NPs for a period of 72 

hours. After exposure, the medium in the wells was 

aspirated and washed with PBS twice. The cells were 

fixed in 3.7% pre-cooled paraformaldehyde at room 

temperature for 15 minutes then washed twice with PBS. 

500 µl of Devil’s stain was added to each well for 60 

minutes at room temperature.  Each well was washed 

twice with PBS followed by a counter stain of 50 µl 

prepared intermediate DAPI (4',6-diamidino-2-

phenylindole) for 2 minutes at room temperature. The 
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wells were washed three times with PBS in dark and 

coverslips were mounted with Prolong gold antifade

reagent (Molecular probe, USA). The slides were 

examined using a confocal laser

(Zeiss, Germany).  

Statistical Analysis

using

t

Experiments were done in triplicate.  Data is expressed 

as mean ± standard deviation (M ± SD). The level of 

statistical significance was p < 0.0

otherwise. 

RESULTS AND DISCUSSION

Transmission Electron Microscope (TEM

The TEM micrographs in figure 1 show the shape and 

size of the synthesized gold conjugated

derived calcium carbonate nanoparticles (Au

CsCaCO

CsCaCO

Figures 

CsCaCO

and mechanical methods, which show well

CsCaCO
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physical and chemical properties greatly rely upon the 

. Recent studies 

have documented particle dispersion to be due to 

repulsion and the conjugate hydration 

surface layer, preventing aggregation and increasing 

and colleagues (2016) 

reagents affected in 

the synthesis, which allowed for more dispersity and 

stability of the conjugated nanoparticles. Furthermore, 

   

the variation in size 

These results suggest that there is an association 

between the nanoparticles leading to conjugation and 

are of 

ing to emerge is 

the conjugated nanoparticles showed absorbed gold 

sphere 

matrix with excellent particle size, good homogeneity 

surprisingly, not much differences in particle size. A 

explanation for the uniquely obtained 

size could be the controlled synthesis 

conditions and the mechanical approach employed 

resulting in an average and continuous shear force 

within the particles, which accelerated their uniform 
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the citrate reduction method has been notably known for 

preparing different sized, citrate

shaped, and 

[57]

colleagues (2006)

nanoparticle size absorbed inside the matrix of calcium 

carbonate microsphere. 

Figure 2

This analysis set out with the aim of evaluating the 

importance of zeta potential in assessing the surface 

charge 

where previous studies observed inconsistent results of 

the nanoparticles.

nanoparticles could be established by zeta

measurements along with UV

[66]

light scattered is relative to the six power of their 

particle size, and also the larger particles give a greater

signal than smaller particles 

current findings also found that highly positive and 
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the citrate reduction method has been notably known for 

preparing different sized, citrate

shaped, and 

[57]. These results are in agreement with Cai 

colleagues (2006)

nanoparticle size absorbed inside the matrix of calcium 

carbonate microsphere. 

Figure 2: Size distribution by intensity showing two peaks (A) and zeta potential indicating surface charge (B) of the Au

This analysis set out with the aim of evaluating the 

importance of zeta potential in assessing the surface 

charge and stability of the synthesized nanoparticles 

where previous studies observed inconsistent results of 

the nanoparticles.

nanoparticles could be established by zeta

measurements along with UV

[66].  A prior study has shown that the intensity of the 

light scattered is relative to the six power of their 

particle size, and also the larger particles give a greater

signal than smaller particles 

current findings also found that highly positive and 
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the citrate reduction method has been notably known for 

preparing different sized, citrate

shaped, and homogeneously

. These results are in agreement with Cai 

colleagues (2006) [58] who showed exceptional gold 

nanoparticle size absorbed inside the matrix of calcium 

carbonate microsphere.  

distribution by intensity showing two peaks (A) and zeta potential indicating surface charge (B) of the Au

This analysis set out with the aim of evaluating the 

importance of zeta potential in assessing the surface 

and stability of the synthesized nanoparticles 

where previous studies observed inconsistent results of 

the nanoparticles. The stability of the conjugated 

nanoparticles could be established by zeta

measurements along with UV

.  A prior study has shown that the intensity of the 

light scattered is relative to the six power of their 

particle size, and also the larger particles give a greater

signal than smaller particles 

current findings also found that highly positive and 
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the citrate reduction method has been notably known for 

preparing different sized, citrate-capped, spherical 

homogeneously dispersed nanoparticles 

. These results are in agreement with Cai 

who showed exceptional gold 

nanoparticle size absorbed inside the matrix of calcium 

distribution by intensity showing two peaks (A) and zeta potential indicating surface charge (B) of the Au

This analysis set out with the aim of evaluating the 

importance of zeta potential in assessing the surface 

and stability of the synthesized nanoparticles 

where previous studies observed inconsistent results of 

The stability of the conjugated 

nanoparticles could be established by zeta

measurements along with UV-Vis spectrophotometer 

.  A prior study has shown that the intensity of the 

light scattered is relative to the six power of their 

particle size, and also the larger particles give a greater

signal than smaller particles [67]. Interestingly,

current findings also found that highly positive and 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 1, 
                                                                                                                             

                                                                                                                             

the citrate reduction method has been notably known for 

capped, spherical 

dispersed nanoparticles 

. These results are in agreement with Cai and 

who showed exceptional gold 

nanoparticle size absorbed inside the matrix of calcium 

distribution by intensity showing two peaks (A) and zeta potential indicating surface charge (B) of the Au

This analysis set out with the aim of evaluating the 

importance of zeta potential in assessing the surface 

and stability of the synthesized nanoparticles 

where previous studies observed inconsistent results of 

The stability of the conjugated 

nanoparticles could be established by zeta-potential 

Vis spectrophotometer 

.  A prior study has shown that the intensity of the 

light scattered is relative to the six power of their 

particle size, and also the larger particles give a greater

. Interestingly, the 

current findings also found that highly positive and 
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The stability and assessment of the 
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shown in figure 2 and Table 3. The 

16.5 mV, and the poly dispersity index (PDI) was < 0.5.
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that the size of the n
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charge and size distribution by intensity is 

shown in figure 2 and Table 3. The 
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showed that the nanoparticles have a 

surface charge which further displayed nanoparticle 

stability. This may be explained 

presence of more electro-repulsion between the particles 

ultimately displayed lesser agglomeration. This outcome 

reflects that of Hoque and colleagues (2013)

[69, 70].  The results in Table 3 also show 

that the size of the nano conjugate in water as measured 

by the dynamic light scattering (DSL) and the zeta 

potential which corresponds to the negatively charged 
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Table 3

A high negative zeta potential relates to the repulsive 

interaction between the nanoparticles focused on 

preventing agglomeration of the nanoparticles, thus 

exhibiting stability during the incubation period in water 

[71, 72]

nanoparticle suspensions not only indicates high 

stability, but also suggests less toxicity to normal cells 

[73]

results could be 

material in solution due to electric repu

electrically stabilizes the nanoparticles and 

physiochemical

attributed to the synthesis methods used. Similarly, 

Zhang 

understanding of the

life, particle interactions between the charged particles 

and their implications. This outcome is contrary to that 

of Das 

nanoparticle size >100 nm with extremely high positive 

charge suggesting to prevent aggregation which does not 

appear to be our case. Also, in agreement with findings

reported by Isa 

emphasize that higher negative or positive values of 

zeta

particles, because of electric repulsion that electri
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Zeta Potential

Surface Charge 
(mV) ± SD

-16.5 ± 3.66

 

 

 

Table 3: Surface Charge and Size Distribution by light Intensity of the Au

A high negative zeta potential relates to the repulsive 

interaction between the nanoparticles focused on 

preventing agglomeration of the nanoparticles, thus 

exhibiting stability during the incubation period in water 

[71, 72]. The high negative surface charge of the 

nanoparticle suspensions not only indicates high 

stability, but also suggests less toxicity to normal cells 

[73]. However, another possible 

results could be 

material in solution due to electric repu

electrically stabilizes the nanoparticles and 

physiochemical

attributed to the synthesis methods used. Similarly, 

Zhang and colleagues (2008)

understanding of the

life, particle interactions between the charged particles 

and their implications. This outcome is contrary to that 

of Das and colleagues (2011)

nanoparticle size >100 nm with extremely high positive 

charge suggesting to prevent aggregation which does not 

appear to be our case. Also, in agreement with findings

reported by Isa 

emphasize that higher negative or positive values of 

zeta-potential indicate stability and averts aggregation of 

particles, because of electric repulsion that electri

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 1, 
                                                                                                                             

                                                                                                                             

Zeta Potential 

Surface Charge 
(mV) ± SD 

Area (%)

16.5 ± 3.66 

Surface Charge and Size Distribution by light Intensity of the Au

A high negative zeta potential relates to the repulsive 

interaction between the nanoparticles focused on 

preventing agglomeration of the nanoparticles, thus 

exhibiting stability during the incubation period in water 

. The high negative surface charge of the 

nanoparticle suspensions not only indicates high 

stability, but also suggests less toxicity to normal cells 

. However, another possible 

results could be the dispersity of the nano conjugate 

material in solution due to electric repu

electrically stabilizes the nanoparticles and 

physiochemical differences of the nanoparticles could be 

attributed to the synthesis methods used. Similarly, 

and colleagues (2008)

understanding of the overall stability, nanoparticle shelf 

life, particle interactions between the charged particles 

and their implications. This outcome is contrary to that 

and colleagues (2011)

nanoparticle size >100 nm with extremely high positive 

charge suggesting to prevent aggregation which does not 

appear to be our case. Also, in agreement with findings

reported by Isa and colleagues (2016)

emphasize that higher negative or positive values of 

potential indicate stability and averts aggregation of 

particles, because of electric repulsion that electri
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 Zeta Size Distribution

Area (%) 

100 

 

 

 

Surface Charge and Size Distribution by light Intensity of the Au

A high negative zeta potential relates to the repulsive 

interaction between the nanoparticles focused on 

preventing agglomeration of the nanoparticles, thus 

exhibiting stability during the incubation period in water 

. The high negative surface charge of the 

nanoparticle suspensions not only indicates high 

stability, but also suggests less toxicity to normal cells 

. However, another possible explanation for these 

the dispersity of the nano conjugate 

material in solution due to electric repu

electrically stabilizes the nanoparticles and 

differences of the nanoparticles could be 

attributed to the synthesis methods used. Similarly, 

and colleagues (2008) [74] who exposed the 

overall stability, nanoparticle shelf 

life, particle interactions between the charged particles 

and their implications. This outcome is contrary to that 

and colleagues (2011) [75] who showed larger 

nanoparticle size >100 nm with extremely high positive 

charge suggesting to prevent aggregation which does not 

appear to be our case. Also, in agreement with findings

and colleagues (2016)

emphasize that higher negative or positive values of 

potential indicate stability and averts aggregation of 

particles, because of electric repulsion that electri
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Zeta Size Distribution

Peak (Pk)

1 

2 

3 

PDI 

Surface Charge and Size Distribution by light Intensity of the Au

A high negative zeta potential relates to the repulsive 

interaction between the nanoparticles focused on 

preventing agglomeration of the nanoparticles, thus 

exhibiting stability during the incubation period in water 

. The high negative surface charge of the 

nanoparticle suspensions not only indicates high 

stability, but also suggests less toxicity to normal cells 

explanation for these 

the dispersity of the nano conjugate 

material in solution due to electric repulsion that 

electrically stabilizes the nanoparticles and 

differences of the nanoparticles could be 

attributed to the synthesis methods used. Similarly, 

who exposed the 

overall stability, nanoparticle shelf 

life, particle interactions between the charged particles 

and their implications. This outcome is contrary to that 

who showed larger 

nanoparticle size >100 nm with extremely high positive 

charge suggesting to prevent aggregation which does not 

appear to be our case. Also, in agreement with findings

and colleagues (2016), [76] which 

emphasize that higher negative or positive values of 

potential indicate stability and averts aggregation of 

particles, because of electric repulsion that electrically 
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Surface Charge and Size Distribution by light Intensity of the Au-CsCaCO3

A high negative zeta potential relates to the repulsive 

interaction between the nanoparticles focused on 

preventing agglomeration of the nanoparticles, thus 

exhibiting stability during the incubation period in water 

. The high negative surface charge of the 

nanoparticle suspensions not only indicates high 

stability, but also suggests less toxicity to normal cells 

explanation for these 

the dispersity of the nano conjugate 

lsion that 

electrically stabilizes the nanoparticles and 

differences of the nanoparticles could be 

attributed to the synthesis methods used. Similarly, 

who exposed the 

overall stability, nanoparticle shelf 

life, particle interactions between the charged particles 

and their implications. This outcome is contrary to that 

who showed larger 

nanoparticle size >100 nm with extremely high positive 

charge suggesting to prevent aggregation which does not 

appear to be our case. Also, in agreement with findings 

which 

emphasize that higher negative or positive values of 

potential indicate stability and averts aggregation of 
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stabilizes the nanoparticles dispersion. It 

be positively assumed that the conjugated nanoparticles 

have good stability.

Uv-Vis Spectrophotometer

The Uv-Vis spectrophotometer spectra of gold 

nanoparticles (AuNPs) and Au

compared in order to distinguish the different 

absorption-wavelength crests of the nanoparticles. The 

AuNPs spectrum illustrates a sharper average absorption 

peak at 522 nm whereas the Au

shows a wider utmost absorption peak betwee

536 nm as revealed in figure 3.

Altogether, this outcome suggests that there is an 
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stabilizes the nanoparticles dispersion. It 

be positively assumed that the conjugated nanoparticles 

have good stability. 

Vis Spectrophotometer 

Vis spectrophotometer spectra of gold 

nanoparticles (AuNPs) and Au

compared in order to distinguish the different 

wavelength crests of the nanoparticles. The 

AuNPs spectrum illustrates a sharper average absorption 

peak at 522 nm whereas the Au

shows a wider utmost absorption peak betwee

536 nm as revealed in figure 3.

, this outcome suggests that there is an 
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be positively assumed that the conjugated nanoparticles 

Vis spectrophotometer spectra of gold 
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compared in order to distinguish the different 

wavelength crests of the nanoparticles. The 

AuNPs spectrum illustrates a sharper average absorption 
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, this outcome suggests that there is an  

CsCaCO3NPs shows 

536 nm respectively for 
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association between the AuNPs and 

indicating the 

nanoparticles.

A shift in the maximal absorbance wavelength of the 

conjugated nanoparticles in comparison to naked AuNPs 

was observed as indication of aggregation 

accordance with the present results, 

have validated that g

absorbance range but gold

absorbance is significantly observed from 500 

wavelength 

conjugated Au

between 525 

account

formation of the conjugated nanoparticles as the AuNPs 

enter the matrix of the cockle shell

carbonate nanoparticles (CsCaCO

diameter is influenced by the varying nanoparticle 

concentrations suggestin

concentration, more absorption into the CsCaCO

and as a result leading to increased absorption. 

Additionally, in the near infrared visible 

at which light is easily attenuated by the tissue and it has 

been significantl

shift as described by Smith 

However, i

eviden

conjugated nanoparticles. Possibly, the absorption 

spectrum of nanoparticles could shift depending on 

color

plasmon resonance property. Furthermore, the 

nanostructures with NIR photo
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A shift in the maximal absorbance wavelength of the 

conjugated nanoparticles in comparison to naked AuNPs 

was observed as indication of aggregation 

accordance with the present results, 

have validated that gold nanostructures have a wide light 

absorbance range but gold

absorbance is significantly observed from 500 

[57, 77] and what is surprising is that our 

conjugated Au-CsCaCO3NPs displayed absorption peak 

between 525 - 536 nm wavelength.
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association between the AuNPs and Au

of the desired synthesized 

A shift in the maximal absorbance wavelength of the 

conjugated nanoparticles in comparison to naked AuNPs 

was observed as indication of aggregation 

accordance with the present results, previous studies 

old nanostructures have a wide light 

absorbance range but gold plasmon resonance 

absorbance is significantly observed from 500 

and what is surprising is that our 

NPs displayed absorption peak 

536 nm wavelength.

ability for these results could be explained by the 

formation of the conjugated nanoparticles as the AuNPs 

enter the matrix of the cockle shell- derived calcium 

carbonate nanoparticles (CsCaCO3NPs). Whose 

diameter is influenced by the varying nanoparticle 

concentrations suggesting increased AuNPs 

concentration, more absorption into the CsCaCO

and as a result leading to increased absorption. 

Additionally, in the near infrared visible 

at which light is easily attenuated by the tissue and it has 

y reported that absorption peaks could 

shift as described by Smith and colleagues (2010)

n contrast to earlier findings,

ce of near infrared (NIR) was detected in the 

conjugated nanoparticles. Possibly, the absorption 

spectrum of nanoparticles could shift depending on 
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nanostructures with NIR photo-thermal properties have 
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of the desired synthesized 

A shift in the maximal absorbance wavelength of the 

conjugated nanoparticles in comparison to naked AuNPs 

was observed as indication of aggregation [66]. 

previous studies 

old nanostructures have a wide light 

plasmon resonance 

absorbance is significantly observed from 500 - 520 nm 

and what is surprising is that our 

NPs displayed absorption peak 

536 nm wavelength. A possible 

s could be explained by the 

formation of the conjugated nanoparticles as the AuNPs 

derived calcium 
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diameter is influenced by the varying nanoparticle 

g increased AuNPs 

concentration, more absorption into the CsCaCO3NPs 

and as a result leading to increased absorption. 

Additionally, in the near infrared visible spectral region, 

at which light is easily attenuated by the tissue and it has 
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ce of near infrared (NIR) was detected in the 

conjugated nanoparticles. Possibly, the absorption 

spectrum of nanoparticles could shift depending on 

utilization of the 

plasmon resonance property. Furthermore, the 

thermal properties have 

Journal of Nanomedicine, Nanotechnology and Nanomaterials Vol 1, Iss 1 
                                                                                                                                                   

                                                                                                                             

NPs 

of the desired synthesized 

A shift in the maximal absorbance wavelength of the 

conjugated nanoparticles in comparison to naked AuNPs 

 In 

previous studies 

old nanostructures have a wide light 

plasmon resonance 

520 nm 

and what is surprising is that our 

NPs displayed absorption peak 

A possible 

s could be explained by the 

formation of the conjugated nanoparticles as the AuNPs 

derived calcium 

NPs). Whose 

diameter is influenced by the varying nanoparticle 

g increased AuNPs 

NPs 

and as a result leading to increased absorption. 

region, 

at which light is easily attenuated by the tissue and it has 

y reported that absorption peaks could 

[78]. 

no clear 
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spectrum of nanoparticles could shift depending on 
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plasmon resonance property. Furthermore, the 

thermal properties have 

been identified to be capable of scattering light strongly, 

which has significant applications in biomedical imaging 

[79]
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been identified to be capable of scattering light strongly, 

which has significant applications in biomedical imaging 

[79].  

Cell Culture 

Lactate Dehydrogenase Assay (LDH)

This analysis was intended to evaluate the cell 

membrane integrity of human breast carcinoma cell line 

(MCF-7) and mouse embryonic fibroblast cell line 

(NIH-3T3) treated with the synthesized Au

CsCaCO3NPs by

(LDH) levels after exposure to the 0, 50, or 100

72 hours (figure 4).

Figure 4: Comparative LDH released by Au
MCF-7 cells and Au
higher LDH % release with MCF
of statistical significance was p < 0.05

The results suggest that the 

of MCF-7 cells treated with Au

slightly higher than that of the Au

NIH3T3 cells.  

The results show biocompatibility assessment of the 

nanoparticles on the cell lines by evaluating the cell 

membrane integrity. It was initially established that a 

normal cell membrane is impermeable to lactate 
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Figure 5: DCF Standard curve.
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normal cell lines including MCF-7 and NIH3T3 which 

also showed comparable figures as well [103]. In 

addition, the present study also supports similar 

evidence from Zhang and colleagues (2016) [104] that 

conjugated nanoparticles were taken up by the treated 

MCF-7 and NIH3T3 cells. More importantly, the results 

are in accord with recent studies that confirmed cellular 

uptake of the nanoparticles, cell death findings and non-

toxicity to the normal cell line over the cancer cell line 

[105-107]. Although these results differ from some 

published studies [108, 109], they are still consistent 

with a number of recent works [110-112]. It seems likely 

that these results could be due to a number of factors 

affecting the efficiency of the nanoparticles and cellular 

uptake such as size, shape, charge and surface 

modification of the nanoparticles, explained by 

pinocytosis, a type of endocytosis associated with 

internalization of the nanoparticles. Elaborately, smaller 

particles such as nanoparticles can easily be internalized 

by the cell and in regards to shape and charge it has been 

confirmed that more positive charges and spherical 

particles are easily taken up by the cell due to the highly 

negative charge present in the cell membrane [113, 114].  

These are useful results and therefore it is safe and 

possible that our conjugated nanoparticles could be used 

for bio imaging. 

CONCLUSIONS 

The goal of this study was to assess biocompatibility and 

cellular uptake of gold-near infrared conjugated cockle 

shell-derived calcium carbonate nanoparticles for 

fluorescent imaging. Based on our results, the 

conjugated nanoparticles are biocompatible, 

environmentally friendly, easily synthesized, and 

suitable for imaging applications. Additionally, not only 

were they taken up by both cancer and non-cancerous 

cell lines, but increased cell death was observed in the 

cancer cells relative to the non-cancerous cells. Taken 

together, these findings suggest the possibility of a role 

for these synthesized conjugated nanoparticles role in 

cancer imaging. This research extends our knowledge 

for bio-imaging using gold-cockle shell-derived calcium 

carbonate nanoparticles.  
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